Catalysis Letters

, Volume 142, Issue 10, pp 1202–1210 | Cite as

Photocatalytically Reducing CO2 to Methyl Formate in Methanol Over Ag Loaded SrTiO3 Nanocrystal Catalysts

  • Dandan Sui
  • Xiaohong Yin
  • Hongzhi Dong
  • Shiyue Qin
  • Jingshuai Chen
  • Wanlin Jiang


Ag–SrTiO3 nanocrystal photocatalysts were prepared by hydrothermal synthesis method for reducing CO2 to methyl formate (MF) in methanol via ultraviolet irradiation. CO2 was reduced to MF by electrons on conduction band of the photocatalyst. In order to obtain a high rate of MF evolution, we researched and optimized the preparation procedure of Ag–SrTiO3 by changing the Ag dosage, hydrothermal temperature and time. The as synthesized photocatalysts were characterized with X-ray diffraction, UV–Vis absorption spectra, transmission electron microscope, N2 sorption analysis at 77 K and activity evaluation. A catalyst of 7 wt% Ag on SrTiO3 with hydrothermal synthesis at 150 °C and 22 h was found to exhibit the highest photocatalytic activity in MF formation rate of 3,006 μmol/(h g cat), which was more remarkable than that of pristine SrTiO3.

Graphical Abstract

When the SrTiO3 is irradiated by UV light of suitable wavelength with sufficient photonic energy (hν), photo-generated electron–hole pairs were created, part of the excited electrons and holes recombined together and radiated out heat, while rest part would react with the reactants near the SrTiO3 surface. It was certain electrons transmitting to the surface of Ag particle that avoided their recombination with holes, resulting in effective extension of the life-span of the electron–hole pairs.


Photocatalysis Reduction of CO2 Ag–SrTiO3 Hydrothermal synthesis Methanol Methyl formate 



We gratefully acknowledge financial support by the National Natural Science Foundation of China (NSFC) (No. 21176192) and the Tianjin natural science foundation (No. 12JCZDJC29400).


  1. 1.
    Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) J Catal 279:123CrossRefGoogle Scholar
  2. 2.
    Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Appl Catal A 325:1CrossRefGoogle Scholar
  3. 3.
    Chen L, Graham ME, Li G, Gentner DR, Dimitrijevic NM, Gray KA (2009) Thin Solid Films 517:5641CrossRefGoogle Scholar
  4. 4.
    Dey GR, Belapurkar AD, Kishore K (2004) J Photochem Photobiol A Chem 163:503CrossRefGoogle Scholar
  5. 5.
    Nasution H, Purnama E, Kosela S, Gunlazuardi J (2005) Catal Commun 6:313CrossRefGoogle Scholar
  6. 6.
    Tseng IH, Wu JCS (2004) Catal Today 97:113CrossRefGoogle Scholar
  7. 7.
    Puangpetch T, Sreethawong T, Chavadej S (2010) Int J Hydrogen Energy 35:6531CrossRefGoogle Scholar
  8. 8.
    Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2008) J Mol Catal A Chem 287:70CrossRefGoogle Scholar
  9. 9.
    Qin Y, Wang G, Wang Y (2007) Catal Commun 8:926CrossRefGoogle Scholar
  10. 10.
    Subramanian V, Roeder RK, Wolf EE (2006) Ind Eng Chem Res 45:2187CrossRefGoogle Scholar
  11. 11.
    Wang J, Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2004) J Photochem Photobiol A Chem 165:149CrossRefGoogle Scholar
  12. 12.
    Sun Y, Liu J, Li Z (2011) J Solid State Chem 184:1924CrossRefGoogle Scholar
  13. 13.
    Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2009) J Mol Catal A Chem 312:97CrossRefGoogle Scholar
  14. 14.
    Ma BJ, Yang JH, Han HX, Wang JT, Zhang XH, Li C (2010) J Phys Chem C 114:12818CrossRefGoogle Scholar
  15. 15.
    Yu J, Xiong J, Cheng B, Liu S (2005) Appl Catal B Environ 60:211CrossRefGoogle Scholar
  16. 16.
    Jia A, Su Z, Lou L-L, Liu S (2010) Solid State Sci 12:1140CrossRefGoogle Scholar
  17. 17.
    Linic S, Christopher P, Ingram DB (2011) Nat Mater 10:911CrossRefGoogle Scholar
  18. 18.
    Wang P, Huang B, Zhang Q, Zhang X, Qin X, Dai Y, Zhan J, Yu J, Liu H, Lou Z (2010) Chemistry 16:10042CrossRefGoogle Scholar
  19. 19.
    Jain PK, Huang W, El-Sayed MA (2007) Nano Lett 7:2080CrossRefGoogle Scholar
  20. 20.
    Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo MH (2009) Chemistry 15:1821CrossRefGoogle Scholar
  21. 21.
    Liu J, Sun Y, Li Z, Li S, Zhao J (2011) Int J Hydrogen Energy 36:5811Google Scholar
  22. 22.
    Jing D, Liu M, Chen Q, Guo L (2010) Int J Hydrogen Energy 35:8521CrossRefGoogle Scholar
  23. 23.
    Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503CrossRefGoogle Scholar
  24. 24.
    Xu Y, Schoonen MAA (2000) Am Mineral 85:543Google Scholar
  25. 25.
    Qin S, Xin F, Liu Y, Yin X, Ma W (2011) J Colloid Interface Sci 356:257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dandan Sui
    • 1
  • Xiaohong Yin
    • 1
  • Hongzhi Dong
    • 1
  • Shiyue Qin
    • 2
  • Jingshuai Chen
    • 2
  • Wanlin Jiang
    • 1
  1. 1.School of Chemistry and Chemical EngineeringTianjin University of TechnologyTianjinChina
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations