Advertisement

Catalysis Letters

, Volume 142, Issue 9, pp 1114–1120 | Cite as

Oxidative Esterification of Homologous 1,3-Propanediols

  • Tatyana Kotionova
  • Christopher Lee
  • Peter J. Miedziak
  • Nicholas F. Dummer
  • David J. Willock
  • Albert F. Carley
  • David J. Morgan
  • David W. Knight
  • Stuart H. Taylor
  • Graham J. Hutchings
Article

Abstract

The oxidative esterification of a homologous series of diols (1,3-propanediol,2-methyl-propanediol and 2,2-dimethyl-1,3-propanediol) with methanol has been investigated using titania-supported gold, palladium and gold–palladium catalysts using molecular oxygen. The gold–palladium catalysts showed the highest activity and 1,3-propanediol was the most reactive while the additional methyl groups decreased the reactivity. However, it is possible to achieve high selectivity to methyl 3-hydroxypropionate and 2-methyl-3-hydroxyisobutyrate by mono-oxidations.

Graphical Abstract

Keywords

Gold catalysis Gold palladium alloy nanoparticles Oxidative esterification Diol oxidation 

Notes

Acknowledgments

This work formed part of the Glycerol Challenge and Tennants Fine Chemicals Ltd and the Technology Strategy Board are thanked for their financial support. This project is co-funded by the Technology Strategy Boards Collaborative Research and Development programme, following an open competition. The Technology Strategy Board is an executive body established by the Government to drive innovation. It promotes and invests in research, development and the exploitation of science, technology and new ideas for the benefit of business—increasing sustainable economic growth in the UK and improving quality of life. For more information visit www.innovateuk.org.

References

  1. 1.
    Otera J (2003) Esterification. Wiley–VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Larock RC (1999) Comprehensive organic transformations: a guide to functional group preparations, 2nd edn. Wiley–VCH, New YorkGoogle Scholar
  3. 3.
    Mulzer J (1991) Comprehensive organic synthesis. Pergamon Press, OxfordGoogle Scholar
  4. 4.
    Schoenberg A, Heck RF (1974) J Org Chem 39:3327CrossRefGoogle Scholar
  5. 5.
    Travis BR, Sivakumar M, Hollist GO, Borhan B (2003) Org Lett 5:1031CrossRefGoogle Scholar
  6. 6.
    Hayashi T, Inagaki T, Itayama N, Baba H (2006) Catal Today 117:210CrossRefGoogle Scholar
  7. 7.
    Nielsen IS, Taarning E, Egeblad K, Madsen R, Christensen CH (2007) Catal Lett 116:37CrossRefGoogle Scholar
  8. 8.
    Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) Chem Sus Chem 1:75Google Scholar
  9. 9.
    Kunugi Y (1969) Kogyokagakuzasshi 72:1282Google Scholar
  10. 10.
    Kunugi Y (1972) Nihonkagakukaishi 2265Google Scholar
  11. 11.
    Taarning E, Madsen AT, Marchetti JM, Egeblad K, Christensen CH (2008) Green Chem 10:408CrossRefGoogle Scholar
  12. 12.
    Tagawa Y, Fujimori Y, Mori K, Sasaki Y (2001) JP 2001131122 A 20010515Google Scholar
  13. 13.
    Hong Z, Yu Y (2001) Pige Huagong 18:38Google Scholar
  14. 14.
    Blaser HU, Casagrande B, Siebenhaar B (1997) Stud Surf Sci Catal 108:595CrossRefGoogle Scholar
  15. 15.
    Brett GL, Miedziak PJ, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Tiruvalam R, Kiely CJ, Knight DW, Taylor SH, Morgan DJ, Carley AF, Hutchings GJ (2012) Catal Sci Tech 2:97CrossRefGoogle Scholar
  16. 16.
    Lopez-Sanchez JA, Dimitratos N, Miedziak P, Ntainiua E, Edwards JK, Morgan D, Carley AF, Tiruvalam RC, Kiely CJ, Hutchings GJ (2008) Phys Chem Chem Phys 10:1921CrossRefGoogle Scholar
  17. 17.
    Dimitratos N, Lopez-Sanchez JA, Anthonykutty JM, Brett G, Carley AF, Tiruvalam RC, Herzing AA, Kiely CJ, Knight DW, Hutchings GJ (2009) Phys Chem Chem Phys 11:4952CrossRefGoogle Scholar
  18. 18.
    Pritchard J, Kesavan L, Piccinini M, He QA, Tiruvalam R, Dimitratos N, Lopez-Sanchez JA, Carley AF, Edwards JK, Kiely CJ, Hutchings GJ (2010) Langmuir 26:16568CrossRefGoogle Scholar
  19. 19.
    Kesavan L, Tiruvalam R, Ab Rahim MH, bin Saiman MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Science 331:195CrossRefGoogle Scholar
  20. 20.
    Radnik J, Mohr C, Claus P (2003) Phys Chem Chem Phys 5:172CrossRefGoogle Scholar
  21. 21.
    Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362CrossRefGoogle Scholar
  22. 22.
    Yoshikazu S, Shuji E, Mariko A (1996) EP 0722929 (A1)Google Scholar
  23. 23.
    Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc., WallingfordGoogle Scholar
  24. 24.
    Enache DI, Knight DW, Hutchings GJ (2005) Catal Lett 103:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tatyana Kotionova
    • 1
  • Christopher Lee
    • 1
  • Peter J. Miedziak
    • 1
  • Nicholas F. Dummer
    • 1
  • David J. Willock
    • 1
  • Albert F. Carley
    • 1
  • David J. Morgan
    • 1
  • David W. Knight
    • 1
  • Stuart H. Taylor
    • 1
  • Graham J. Hutchings
    • 1
  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations