Catalysis Letters

, Volume 142, Issue 9, pp 1067–1074 | Cite as

Superior Performance of Mesoporous TiO2–Al2O3 Supported NSR Catalysts with the Support Synthesized Using Nonionic and Cationic Surfactants as Co-Templates

  • Zhongbo Li
  • Ming Meng
  • Rui You
  • Tong Ding
  • Zhijun Li


Mesoporous binary oxides TiO2–Al2O3 were prepared by citric acid complexation-organic template decomposition method using nonionic p-octyl polyethylene glycol phenyl ether (OP) and cationic cetyltrimethyl-ammonium bromide (CTAB) as co-templates; the corresponding NSR catalysts Pt/K/TiO2–Al2O3 were prepared by successive wetness impregnation. Multiple techniques including N2 physisorption, XRD, HR-TEM, NH3-TPD, H2-TPR and H2-chemisorption were employed for catalyst characterization. It is found that the support prepared using OP and CTAB as co-templates possesses much larger specific surface area (309 m2/g) than those prepared using CTAB as single template (275 m2/g) or using conventional co-precipitation (250 m2/g); meanwhile, this support exhibits the largest amount of surface acidic sites as indicated by NH3-TPD results, which makes its supported catalyst show the best sulfur-resistance performance among the catalysts with the support prepared by different methods. The results of H2-chemisorption and HR-TEM conformably indicate that this catalyst also possesses the highest dispersion of Pt, which determines its best NOx storage and reduction performance at lean/rich cycles, giving a mean NOx reduction percentage as high as 95 %.

Graphical Abstract


Co-templates NOx storage and reduction Sulfur resistance Mesoporous TiO2–Al2O3 



This work is financially supported by the National Natural Science Foundation of China (No. 21076146), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20090032110013) and the Program of New Century Excellent Talents in University of China (No. NCET–07–0599). The authors are also grateful to the financial support from the State Key Laboratory of Engines at Tianjin University (No. K2012-05).


  1. 1.
    Cremona A, Fornasari G, Livi M, Petrini G, Trifirò F, Vaccari A, Vogna E (2008) Catal Lett 125:386CrossRefGoogle Scholar
  2. 2.
    Weibel M, Waldbüßer N, Wunsch R, Chatterjee D, Bandl-Konrad B, Krutzsch B (2009) Top Catal 52:1702CrossRefGoogle Scholar
  3. 3.
    Bögner W, Krämer M, Krutzsch B, Pischinger S, Voigtländer D, Wenninger G, Wirbeleit F, Brogan MS, Brisley RJ, Webster DE (1995) Appl Catal B 7(1–2):153Google Scholar
  4. 4.
    Büchel R, Pratsinis SE, Baiker A (2012) Appl Catal B 113–114:160Google Scholar
  5. 5.
    Luo JY, AL-Harbi M, Pang M, Epling WS (2011) Appl Catal B 106:664CrossRefGoogle Scholar
  6. 6.
    Happel M, Desikusumastuti A, Sobota M, Laurin M, Libuda J (2010) J Phys Chem C 114:4568CrossRefGoogle Scholar
  7. 7.
    Liu ZQ, Anderson JA (2004) J Catal 228:243CrossRefGoogle Scholar
  8. 8.
    Zou ZQ, Meng M, Zhou XY, Li XG, Zha YQ (2009) Catal Lett 128:475CrossRefGoogle Scholar
  9. 9.
    He JJ, Meng M, Zou ZQ, He XX (2010) Catal Lett 136:234CrossRefGoogle Scholar
  10. 10.
    Hirata H, Hachisuka I, Ikeda Y, Tsuji S, Matsumoto S (2001) Top Catal 16/17:145CrossRefGoogle Scholar
  11. 11.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  12. 12.
    Chaudhari K, Bal R, Chandwadkar AJ, Sivasanker S (2002) J Mol Catal A 177:247CrossRefGoogle Scholar
  13. 13.
    Zou ZQ, Meng M, Luo JY, Zha YQ, Xie YN, Hu TD, Liu T (2006) J Mol Catal A 249:240CrossRefGoogle Scholar
  14. 14.
    Song MG, Kim JY, Cho SH, Kim JD (2002) Langmuir 18:6110CrossRefGoogle Scholar
  15. 15.
    Prinetto F, Manzoli M, Morandi S, Frola F, Ghiotti G, Castoldi L, Lietti L, Forzatti P (2010) J Phys Chem C 114:1127CrossRefGoogle Scholar
  16. 16.
    Liu ZQ, Epling WS, Anderson JA (2011) J Phys Chem C 115:952CrossRefGoogle Scholar
  17. 17.
    He XX, Meng M, He JJ, Zou ZQ, Li XG, Li ZQ, Jiang Z (2010) Catal Commun 12:165CrossRefGoogle Scholar
  18. 18.
    Zou ZQ, Meng M, He JJ (2010) Mater Chem Phys 124:987CrossRefGoogle Scholar
  19. 19.
    Feng X, Jiang GY, Zhao Z, Wang L, Li XH, Duan AJ, Liu J, Xu CM, Gao JS (2010) Energy Fuel 24:4111CrossRefGoogle Scholar
  20. 20.
    Liu Y, Meng M, Li XG, Guo LH, Zha YQ (2008) Chem Eng Res Des 86:932CrossRefGoogle Scholar
  21. 21.
    Kabin KS, Muncrief RL, Harold MP (2004) Catal Today 96:79CrossRefGoogle Scholar
  22. 22.
    Pieta IS, García-Diéguez M, Herrera C, Larrubia MA, Alemany LJ (2010) J Catal 270:256CrossRefGoogle Scholar
  23. 23.
    Wang XY, Yu YB, He H (2011) Appl Catal B 104:151CrossRefGoogle Scholar
  24. 24.
    Arena GE, Bianchini A, Centi G, Vazzana F (2001) Top Catal 16/17:157CrossRefGoogle Scholar
  25. 25.
    Castoldi L, Lietti L, Bonzi R, Artioli N, Forzatti P, Morandi S, Ghiotti G (2011) J Phys Chem C 115:1277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zhongbo Li
    • 1
  • Ming Meng
    • 1
  • Rui You
    • 1
  • Tong Ding
    • 1
  • Zhijun Li
    • 2
  1. 1.Tianjin Key Laboratory of Catalysis Science and Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.State Key Laboratory of EnginesTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations