Catalysis Letters

, Volume 142, Issue 12, pp 1512–1519 | Cite as

Immobilization of Tetraphenylporphyrin Manganese (III) Chloride in HMS Modified by Zr, Cu, and Zn Oxides and Their Catalytic Activity

  • Wei-jie Zhang
  • Ping-ping Jiang
  • Ping-bo Zhang
  • Peng Liu


Tetraphenylporphyrin manganese (III) chloride (Mn(TPP)Cl) was grafted on hexagonal mesoporous silica (HMS) modified by Al, Zr, Cu, and Zn oxides. The catalytic performance of these novel materials was investigated by carrying out the oxidation of fatty acid methyl esters at room temperature. XRD, ICP-AES, N2 physisorption, SEM, UV–Vis spectroscopy, FTIR, and thermal analysis were employed to analysis these heterogeneous materials. Enhancement of epoxidation activity for Mn(TPP)Cl/Zn–HMS and Mn(TPP)Cl/Cu–HMS with respect to other samples indicated the participation of promoters in the epoxidation reaction mechanism. A blue shift was observed when compared with the spectra of free Mn(TPP)Cl, which indicated that the nature of promoter influenced the redox properties of the Mn complexes. The hydrophobic nature of heterogeneous materials was determined by thermal analysis, which affected the selectivity of epoxidation. Epoxidation activity was observed over that Mn(TPP)Cl/Zn–HMS (23.2 % for Mn(TPP)Cl/Zn–HMS, 13.8 % for Mn(TPP)Cl/HMS, none for Zn–HMS) demonstrated the promotion by Zn and the catalytic activity remained when the catalysts were recycled three times.

Graphical Abstract

Mesoporous molecular sieves after being encapsulated with Mn(TPP)Cl revealed promising properties due to their very high surface area, the mesoporous structure and high thermal stability. Due to the cooperative effect between Mn(TPP)Cl on the surface of Zn-HMS and the bare Zn of internal surface, Mn(TPP)Cl/Zn-HMS showed much enhanced epoxidation catalytic performance with respect to the Mn(TPP)Cl/HMS sample (23.2% for Mn(TPP)Cl/Zn-HMS, 13.8% for Mn(TPP)Cl/HMS). The catalytic performance of these novel materials was investigated by carrying out the green epoxidation of FAMEs at room temperature.


Manganese (III) porphyrin Epoxidation HMS Fatty acid methyl esters Metal oxides 



This work was supported financially by the National “Twelfth Five-Year” Plan for Science & Technology (2012BAD32B03), the National Natural Science Foundation of China (20903048), and the Academy and Research Institutes (BY2010118) in Jiangsu Province of China.


  1. 1.
    Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I, Moosavifar M (2009) J Mol Catal A: Chem 302:68CrossRefGoogle Scholar
  2. 2.
    Nakagaki S, Wypych F (2007) J Colloid Interface Sci 315:142CrossRefGoogle Scholar
  3. 3.
    Xiang F, Li TM, Jiang YX, Guo YA (2011) Catal Comm 12:886CrossRefGoogle Scholar
  4. 4.
    Brien PJO (2000) Chem Biol Interact 129:113CrossRefGoogle Scholar
  5. 5.
    Kellner DG, Hung SC, Weiss KE, Sligar SG (2002) J Biol Chem 277:9641CrossRefGoogle Scholar
  6. 6.
    Yoshioka S, Tosha T, Takahashi S, Ishimori K, Hori H, Morishima I (2002) J Am Chem Soc 124:14571CrossRefGoogle Scholar
  7. 7.
    Ferreira ADQ, Vinhado FS, Iamamoto Y (2006) J Mol Catal A: Chem 243:111CrossRefGoogle Scholar
  8. 8.
    Holland BT, Walkup C, Stein A (1998) J Phys Chem B 102:4301CrossRefGoogle Scholar
  9. 9.
    Costa AA, Ghesti GF, Macedo JL, Braga VS, Santos MM, Dias JA, Dias SCL (2008) J Mol Catal A: Chem 282:149CrossRefGoogle Scholar
  10. 10.
    Gao BJ, Wang RX, Zhang Y (2009) J Appl Polym Sci 112:2764CrossRefGoogle Scholar
  11. 11.
    Serwicka EM, Poltowicz J, Bahranowski K, Olejniczak Z, Jones W (2004) Appl Catal A Gen 275:9CrossRefGoogle Scholar
  12. 12.
    Biermann U, Friedt W, Lang S (2000) Angew Chem Int Ed 39:2206CrossRefGoogle Scholar
  13. 13.
    Du GD, Tekin A, Hammond EG, Woo LK (2004) J Am Oil Chem Soc 81:477CrossRefGoogle Scholar
  14. 14.
    Adler AD (1967) J Org Chem 32:476CrossRefGoogle Scholar
  15. 15.
    Adler AD, Longo FR, Kampas F (1970) J Inorg Nucl Chem 32:2443CrossRefGoogle Scholar
  16. 16.
    Tanev PT, Pinnavaia TJ (1995) Science 267:865CrossRefGoogle Scholar
  17. 17.
    Ye X, Jiang PP, Zhang PB, Dong YM (2010) Catal Lett 137:88CrossRefGoogle Scholar
  18. 18.
    Jiang PP, Chen M, Dong YM, Lu Y, Ye X, Zhang WJ (2010) J Am Oil Chem Soc 87:83CrossRefGoogle Scholar
  19. 19.
    Miyake Y, Yokomizo K, Matsuzaki N (1998) J Am Oil Chem Soc 75:15CrossRefGoogle Scholar
  20. 20.
    Gunstone FD (1993) J Am Oil Chem Soc 70:1139CrossRefGoogle Scholar
  21. 21.
    Traylor TG (1991) Pure Appl Chem 63:265CrossRefGoogle Scholar
  22. 22.
    Gunter MJ, Turner P (1991) Coord Chem Rev 108:115CrossRefGoogle Scholar
  23. 23.
    Espinosa M, Terres E, Pacheco S, Mejia R, Rodriguez R (2010) J Sol-Gel Sci Technol 53:239CrossRefGoogle Scholar
  24. 24.
    Meunier B (1992) Chem Rev 92:1411CrossRefGoogle Scholar
  25. 25.
    Corma A, Domine M, Gaona JA, Jordá JL, Navarro MT, Rey F (1998) Chem Commun 20:2211CrossRefGoogle Scholar
  26. 26.
    Kim Y, Choi JR, Yoon M, Furube A, Asahi T, Masuhara H (2001) J Phys Chem B 105:8513CrossRefGoogle Scholar
  27. 27.
    Luan ZH, Fournier JA, Wooten JB, Miser DE (2005) Micropor Mesopor Mater 83:150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wei-jie Zhang
    • 1
  • Ping-ping Jiang
    • 1
  • Ping-bo Zhang
    • 1
  • Peng Liu
    • 1
  1. 1.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations