Catalysis Letters

, Volume 142, Issue 5, pp 627–636 | Cite as

Epoxidation of Butadiene Over Nickel Modified TS-1 Catalyst

  • Mei Wu
  • Lingjun Chou
  • Huanling Song


Nickel modified Titanium silicalite 1 (TS-1) catalysts provided an environmentally benign and effective method for butadiene epoxidation. Certain loading of modified Ni in our system significantly promoted TS-1 catalytic activity. The product vinyloxirane (VO) was obtained with high yield of 0.49 mol/L (theoretic equilibrium value 0.52 mol/L). The turnover number (TON, determined as the molar VO obtained per molar Ti atom) reached 1,140. Besides, the catalyst kept high activity during five runs of reusability test. XRD, N2 adsorption and desorption, TPR, XPS, FT-IR and DR UV–Vis were employed to characterize the specific Ni role to Ti-site in Ni/TS-1 catalysts.

Graphical Abstract

Titanium silicalite 1 (TS-1) modified with different nickel contents as catalysts for the epoxidation of butadiene (BD) with hydrogen peroxide (H2O2). Vinyloxirane (VO) was obtained with high yield TON


Butadiene Epoxidation Vinyloxirane Titanium silicalite 1 Nickel 



The authors sincerely acknowledge the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation of China.


  1. 1.
    Medlin JW, Barteau MA, Vohs JM (2000) J Mol Catal A 163:129CrossRefGoogle Scholar
  2. 2.
    Kadesch RG (1946) J Am Chem Soc 68:41CrossRefGoogle Scholar
  3. 3.
    Monnier JR, Muehlbauer PJ (1990) US Patent 4897498Google Scholar
  4. 4.
    Doskocil EJ, Mueller GM (2005) J Catal 234:143CrossRefGoogle Scholar
  5. 5.
    Cowell JJ, Santra AK, Lambert RM (2000) J Am Chem Soc 122:2381CrossRefGoogle Scholar
  6. 6.
    Müslehiddinoğlu J, Vannice MA (2004) J Catal 222:214CrossRefGoogle Scholar
  7. 7.
    Song H, Chen G, Li S, Luo S, Yao C, Suo J (2005) React Kinet Catal Lett 85:45CrossRefGoogle Scholar
  8. 8.
    Taramasso M, Perego G, Notari B (1983) US Patent 4410501Google Scholar
  9. 9.
    Clerici MG, Romano U (1987) Eur Patent 0230949A2Google Scholar
  10. 10.
    Neri C, Anfossi B, Buonomo F (1983) Eur Patent 100119A1Google Scholar
  11. 11.
    Clerici MG, Bellussi G, Romano U (1991) J Catal 129:159CrossRefGoogle Scholar
  12. 12.
    Notari B (1988) Stud Surf Sci Catal 37:413CrossRefGoogle Scholar
  13. 13.
    Notari B (1991) Stud Surf Sci Catal 60:343CrossRefGoogle Scholar
  14. 14.
    Notari B (1996) Adv Catal 46:253CrossRefGoogle Scholar
  15. 15.
    Zhang X, Zhang Z, Suo J, Li S (2000) Catal Lett 66:175CrossRefGoogle Scholar
  16. 16.
    Freidrich H, Heim W, Kleezman A, Kolb H, Schreyer G (1980) US Patent 197161Google Scholar
  17. 17.
    Choudhary VR, Patil NS, Chaudhari NK, Bhargava SK (2004) Catal Commun 5:205CrossRefGoogle Scholar
  18. 18.
    Choudhary VR, Jha R, Jana P (2008) Catal Commun 10:205CrossRefGoogle Scholar
  19. 19.
    Lamberti C, Bordiga S, Zecchina A, Carati A, Fitch AN, Artioli G, Petrini G, Salvalaggio M, Marra GL (1999) J Catal 183:222CrossRefGoogle Scholar
  20. 20.
    Capel-Sanchez MC, Campos-Martin JM, Campos-Martin JL, Fierro G (2003) Appl Catal A 246:69CrossRefGoogle Scholar
  21. 21.
    Rodea CV, Nehetea UN, Dongare MK (2003) Catal Commun 4:365CrossRefGoogle Scholar
  22. 22.
    Marra GL, Artioli G, Fitch AN, Milanesio M, Lamberti C (2000) Microporous Mesoporous Mater 40:85CrossRefGoogle Scholar
  23. 23.
    Liu T, Hacarlioglu P, Ted Oyama S, Luo M, Pan X, Lu J (2009) J Catal 267:202CrossRefGoogle Scholar
  24. 24.
    Poncelet GM, Centeno A, Molina R (2005) Appl Catal A 288:232CrossRefGoogle Scholar
  25. 25.
    Kirumakki SR, Shpeizer BG, Sagar GV, Chary KVR, Clearfield A (2006) J Catal 242:319CrossRefGoogle Scholar
  26. 26.
    Blasco T, Camblor MA, Fierro JLG, Perez-Parient J (1994) J Microporous Mater 3:259CrossRefGoogle Scholar
  27. 27.
    Capel-Sanchez MC, Campos-Martin JM, Fierro JLG, de Frutos MP, Padilla Polo A (2000) Chem Commun 31:855CrossRefGoogle Scholar
  28. 28.
    Armaroli T, Milella F, Notari B, Willey RJ, Busca G (2001) Top Catal 15:63CrossRefGoogle Scholar
  29. 29.
    Flanigen EM (1976) In: Rabo JA (ed) Zeolite Chemistry and Catalysis. American Chemical Society, WashingtonGoogle Scholar
  30. 30.
    Prasetyoko D, Ramli Z, Endud S, Nur H (2005) J Mol Catal A 24:118Google Scholar
  31. 31.
    Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spano G, Rivetti F, Zecchin A (2001) J Am Chem Soc 123:11409CrossRefGoogle Scholar
  32. 32.
    Boccuti MR, Rao KM, Zecchina A, Leofanti G, Petrini G (1989) Stud Surf Sci Catal 48:133CrossRefGoogle Scholar
  33. 33.
    Bordiga S, Damin A, Bonino F, Zecchina A, Spano G, Rivetti F, Bolis V, Prestipino C, Lamberti C (2002) J Phys Chem B 106:9892CrossRefGoogle Scholar
  34. 34.
    Wang Q, Wang L, Chen J, Wu Y, Mi Z (2007) J Mol Catal A 273:73CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y (2010) Appl Mater Interfaces 2:2915CrossRefGoogle Scholar
  36. 36.
    RivesV Kannan S (2000) J Mater Chem 10:489CrossRefGoogle Scholar
  37. 37.
    Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  38. 38.
    Arca V, Boscolo Boscoletto A, Fracasso N, Medab L, Ranghino G (2006) J Mol Catal A 243:264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations