Advertisement

Catalysis Letters

, Volume 142, Issue 4, pp 492–500 | Cite as

Synthesis of 2-Methylpyrazine Over Highly Dispersed Copper Catalysts

  • Wen Luo
  • Fang-Li Jing
  • Xiao-Peng Yu
  • Si Sun
  • Shi-Zhong Luo
  • Wei Chu
Article

Abstract

A series of CuCoAl catalysts were synthesized by co-precipitation and impregnation methods, tested in synthesis of 2-methylpyrazine (2-MP) and characterized by X-ray diffraction, N2 adsorption, thermo-gravimetry analysis, H2-temperature-programmed reduction, dissociative N2O adsorption and temperature-programmed oxidation. The precursors prepared by co-precipitation method shows a well-crystallized hydrotalcite. The study proves that the calcination temperature of hydrotalcite has a significant effect on the catalyst surface area, crystallite size and copper dispersion. In comparison with catalyst prepared by impregnation, the catalyst prepared by co-precipitation method calcined at 500 °C exhibits higher specific surface area, higher copper dispersion and the better reducibility. Consequently, CuCoAl catalyst derived from hydrotalcite is more active and selective for synthesis of 2-MP. Moreover, it shows the better stability due to the good resistance to coke formation.

Graphical Abstract

A novel solid base catalyst containing copper and spinel was prepared by the thermal decomposition of Cu–Co–Al hydrotalcite-like compounds for synthesis of 2-methylpyrazine

Keywords

CuCoAl catalyst 2-Methylpyrazine Hydrotalcite High dispersion 

Notes

Acknowledgments

This work was supported by the National High Technology Research and Development Program (863 Program, NO.2008AA062402-1), the National Basic Research Program of China Program (973 Program, NO.2011CB201202), and Chinese Chengda Scholarship.

References

  1. 1.
    Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro JLG (2003) J Catal 219:389CrossRefGoogle Scholar
  2. 2.
    Matter PH, Braden DJ, Ozkan US (2004) J Catal 223:340CrossRefGoogle Scholar
  3. 3.
    Kniep BL, Girgsdies F, Ressler T (2005) J Catal 236:34CrossRefGoogle Scholar
  4. 4.
    Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) J Catal 194:373CrossRefGoogle Scholar
  5. 5.
    Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:56Google Scholar
  6. 6.
    Natal-Santiago MA, Sánchez-Castillo MA, Cortright RD, Dumesic JA (2000) J Catal 193:16CrossRefGoogle Scholar
  7. 7.
    Scheur FT, Linden B, Mittelmeijer-Hazeleger MC, Nazloomian JG, Staat LH (1994) Appl Catal A Gen 111:63CrossRefGoogle Scholar
  8. 8.
    Zawadzki M, Staszak W, López-Suárez FE, Illán-Gómez MJ, Bueno-López A (2009) Appl Catal A Gen 371:92CrossRefGoogle Scholar
  9. 9.
    Obalová L, Karásková K, Jirátová K, Kovanda F (2009) Appl Catal B Environ 90:132CrossRefGoogle Scholar
  10. 10.
    Takahashi R, Sato S, Sodesawa T, Kato M (2000) J Sol–Gel Sci Technol 19:715CrossRefGoogle Scholar
  11. 11.
    Carvalho MCN, Passos FB, Schmal M (2002) Catal Commun 3:503CrossRefGoogle Scholar
  12. 12.
    Wang ZL, Liu QS, Yu JF, Wu TH, Wang G (2003) Appl Catal A Gen 239:87CrossRefGoogle Scholar
  13. 13.
    Choudary BM, Kantam ML, Rahman A, Reddy CV, Rao KK (2001) Angew Chem Int Ed 40:763CrossRefGoogle Scholar
  14. 14.
    Gao LD, Tang Y, Xue QS, Liu Y, Lu Y (2009) Energ Fuels 23:624CrossRefGoogle Scholar
  15. 15.
    Zhou CH, Beltramini JN, Lin CX, Xu ZP, Lu GQM, Tanksale A (2011) Catal Sci Technol 1:111CrossRefGoogle Scholar
  16. 16.
    Yuan ZL, Wang L, Wang JH, Xia SX, Chen P, Hou ZY, Zheng X (2011) Appl Catal B Environ 101:431CrossRefGoogle Scholar
  17. 17.
    Yu XP, Chu W, Wang N, Ma F (2011) Catal Lett 141:1228CrossRefGoogle Scholar
  18. 18.
    Yu JJ, Wang XP, Li LD, Hao ZP, Xu ZP, Lu GQM (2007) Adv Funct Mat 17:3598CrossRefGoogle Scholar
  19. 19.
    Xu WJ, Liu XH, Ren JW, Liu HH, Ma YC, Wang YQ, Lu G (2011) Microporous Mesoporous Mater 142:251CrossRefGoogle Scholar
  20. 20.
    Yu JJ, Tao YX, Liu CC, Hao ZP, Xu Z (2007) Environ Sci Technol 41:1399CrossRefGoogle Scholar
  21. 21.
    Rives V, Dubey A, Kannan S (2001) Phys Chem Chem Phys 3:4826CrossRefGoogle Scholar
  22. 22.
    Gabrovska M, Edreva-Kardjieva R, Tenchev K, Tzvetkov P, Spojakina A, Petrov L (2011) Appl Catal A Gen 399:242CrossRefGoogle Scholar
  23. 23.
    Velu S, Suzuki K, Hashimoto S, Satoh N, Ohashi F, Tomura S (2001) J Mater Chem 11:2049CrossRefGoogle Scholar
  24. 24.
    Forni L, Pollesel P (1991) J Catal 130:403CrossRefGoogle Scholar
  25. 25.
    Forni L, Stern G, Gatti M (1987) Appl Catal 29:161CrossRefGoogle Scholar
  26. 26.
    Gervasini A, Bennici S (2005) Appl Catal A Gen 281:199CrossRefGoogle Scholar
  27. 27.
    Holgado MJ, Rivers V, Román MSS (2001) Appl Catal A Gen 214:219CrossRefGoogle Scholar
  28. 28.
    Pérez-Bernal ME, Ruano-Casero RJ, Rives V (2009) J Solid State Chem 182:2566CrossRefGoogle Scholar
  29. 29.
    Jing FL, Zhang YY, Luo SZ, Chu W, Qian W (2010) Appl Clay Sci 48:203CrossRefGoogle Scholar
  30. 30.
    Rives V, Kannan S (2000) J Mater Chem 10:489CrossRefGoogle Scholar
  31. 31.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  32. 32.
    Mokhtar M, Basahel SN, Al-Angary YO (2010) J Alloy Compd 493:376CrossRefGoogle Scholar
  33. 33.
    Shimoda N, Faungnawakij K, Kikuchi R, Fukunag T, Eguchi K (2009) Appl Catal A Gen 365:71CrossRefGoogle Scholar
  34. 34.
    Faungnawakij K, Shimoda N, Tetsuya F, Ryuji K, Eguchi K (2009) Appl Catal B Environ 92:341CrossRefGoogle Scholar
  35. 35.
    Lamonier JF, Boutoundou AB, Gennequin C, Pérez-Zurita MJ, Siffert S, Aboukais A (2007) Catal Lett 118:165CrossRefGoogle Scholar
  36. 36.
    Wang N, Chu W, Zhang T, Zhao XS (2011) Chem Eng J 170:457CrossRefGoogle Scholar
  37. 37.
    Wang N, Chu W, Huang LQ, Zhang T (2010) J Nat Gas Chem 19:117CrossRefGoogle Scholar
  38. 38.
    Agrell J, Hasselbo K, Jansson K, Järås SG, Boutonnet M (2001) Appl Catal A Gen 211:239Google Scholar
  39. 39.
    Liu YY, Hayakawa T, Suzuki K, Hamakawa S, Tsunoda T, Ishii T, Kumagai M (2002) Appl Catal A Gen 223:137CrossRefGoogle Scholar
  40. 40.
    Esposito S, Turco M, Bagnasco G, Cammarano C, Pernice P, Aronne A (2010) Appl Catal A Gen 372:48CrossRefGoogle Scholar
  41. 41.
    Park I, Lee J, Rhee Y, Han Y, Kim H (2003) Appl Catal A Gen 253:249CrossRefGoogle Scholar
  42. 42.
    Park I, Rhee Y, Lee J, Han Y, Jeon J, Kim H (2003) Res Chem Intermed 29:575CrossRefGoogle Scholar
  43. 43.
    Christensen KO, Chen D, Lødeng R, Holmen A (2006) Appl Catal A Gen 314:9CrossRefGoogle Scholar
  44. 44.
    Ereña J, Sierra I, Olazar M, Gayubo AG, Aguayo AT (2008) Ind Eng Chem Res 47:2238CrossRefGoogle Scholar
  45. 45.
    Martín N, Viniegra M, Lima E, Espinosa G (2004) Ind Eng Chem Res 43:1206CrossRefGoogle Scholar
  46. 46.
    Sierra I, Ereña J, Aguayo AT, Arandes JM, Bilbao J (2010) Appl Catal B Environ 94:108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSichuan UniversityChengduChina

Personalised recommendations