Catalysis Letters

, Volume 142, Issue 2, pp 183–189 | Cite as

Promoting Effect of Triglyme on Lean NOx Reduction Over Ag/Al2O3

  • Sara Erkfeldt
  • Anders Palmqvist


The highly oxygenated hydrocarbon triethylene glycol dimethyl ether or triglyme (CH3O–(C2H4O–)3CH3) was found to efficiently reduce NOx under lean conditions over Ag/Al2O3, but gave a low NOx conversion over Cu-ZSM-5. Furthermore, triglyme showed an extraordinary promoting effect when added together with propene as reducing agent for NOx over Ag/Al2O3 at low temperature. This is most likely due to that triglyme promotes the activation of propene.

Graphical Abstract


Hydrocarbon-SCR NOx Reduction Alumina Triglyme Ether Propene Ag/Al2O3 Cu-ZSM-5 



This work was supported by the Swedish Research Council, Swedish Energy Agency, and the Competence Centre for Catalysis hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies: AB Volvo, Volvo Car Corporation, Scania CV AB, Saab Automobile Powertrain AB, Haldor Topsøe A/S, and the Swedish Space Corporation.


  1. 1.
    Stoner M, Litzinger T (1999) Soc Automot Eng SP-1461:55–66Google Scholar
  2. 2.
    Hess HS, Boehman AL, Tijm PJA, Waller FJ (2000) Soc Automot Eng SP-1563:91–98Google Scholar
  3. 3.
    Cider L, Jobson E, Preis M, Krutzsch B, Bandl-Konrad B, Burch R, Fricke R, Captain D, Moral N, Gilot P, Martens J, Habermacher D, Lindfors LE, Klingstedt F, Eränen K, Gottschling M, Webster D, Ilkenhans T, Tissler A, Smedler G (2004) Results from Knownox—A European Cooperation Project, Paper No. F2004V184, FISITA World Automotive Congress, BarcelonaGoogle Scholar
  4. 4.
    Erkfeldt S, Palmqvist A, Jobson E (2007) Top Catal 42–43:149–152CrossRefGoogle Scholar
  5. 5.
    Erkfeldt S, Palmqvist A, Petersson M (2011) Appl Catal B 102:547–554CrossRefGoogle Scholar
  6. 6.
    Erkfeldt S, Palmqvist A, Petersson M (2011) Top Catal 54:1219–1223CrossRefGoogle Scholar
  7. 7.
    Miyadera T (1993) Appl Catal B 2:199–205CrossRefGoogle Scholar
  8. 8.
    Burch R, Breen JP, Meunier FC (2002) Appl Catal B 39:283–303CrossRefGoogle Scholar
  9. 9.
    Kameoka S, Ukisu Y, Miyadera T (2000) Phys Chem Chem Phys 2:367–372CrossRefGoogle Scholar
  10. 10.
    Yu Y, He H, Feng Q, Gao H, Yang X (2004) Appl Catal B 49:159–171CrossRefGoogle Scholar
  11. 11.
    Thomas JF, Lewis SA Sr, Bunting BG, Storey JM, Graves RL, Park PW (2005) Soc Automot Eng SP-1942:199–209Google Scholar
  12. 12.
    Wu Q, Yu YB, He H (2006) Chin J Catal 27:993–998CrossRefGoogle Scholar
  13. 13.
    Dömök M, Tóth M, Raskó J, Erdohelyi A (2007) Appl Catal B 69:262–272CrossRefGoogle Scholar
  14. 14.
    Zhu T, Hao J, Fu L, Li J, Liu Z (2005) React Kinet Catal Lett 84:61–67Google Scholar
  15. 15.
    Satsuma A, Shimizu K (2003) Prog Energy Combust Sci 29:71–84CrossRefGoogle Scholar
  16. 16.
    Li J, Ke R, Li W, Hao J (2008) Catal Today 139:49–58CrossRefGoogle Scholar
  17. 17.
    Tamm S, Ingelsten HH, Palmqvist AEC (2008) J Catal 255:304–312CrossRefGoogle Scholar
  18. 18.
    Shimizu K, Satsuma A, Hattori T (2000) Catal Surv Jpn 4:115–123CrossRefGoogle Scholar
  19. 19.
    Satokawa S, Shibata J, Shimizu K-i, Satsuma A, Hattori T, Kojima T (2007) Chem Eng Sci 62:5335–5337CrossRefGoogle Scholar
  20. 20.
    Satokawa S (2000) Chem Lett 29:294–295CrossRefGoogle Scholar
  21. 21.
    Zhang XL, Yu YB, He H (2007) Appl Catal B 76:241–247CrossRefGoogle Scholar
  22. 22.
    Burch R, Breen JP, Hill CJ, Krutzsch B, Konrad B, Jobson E, Cider L, Eranen K, Klingstedt F, Lindfors LE (2004) Top Catal 30–31:19–25CrossRefGoogle Scholar
  23. 23.
    Korhonen ST, Beale AM, Newton MA, Weckhuysen BM (2011) J Phys Chem C 115:885–896CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Biological Engineering, Competence Centre for CatalysisChalmers University of TechnologyGothenburgSweden
  2. 2.Volvo Technology Corporation, Dept. 6130, Chalmers Science ParkGothenburgSweden

Personalised recommendations