Catalysis Letters

, Volume 142, Issue 2, pp 287–293 | Cite as

Theoretical Studies of Species Related to Acrolein Hydrogenation



Unsaturated alcohols, usually produced from selective hydrogenation of unsaturated aldehydes, are important fine chemical intermediates used to synthesize pharmaceuticals and flavoring materials. Acrolein, the smallest member in α, β-unsaturated aldehydes, is the model system for studying selective hydrogenation of α, β-unsaturated aldehydes. So far most theoretical work is about adsorption and reactions of acrolein and its related species on surfaces. In the present paper we systematically studied the geometries, electronic structures, stability and transformation of various species derived from stepwise hydrogenation of acrolein in the gas phases. We identified the most stable intermediates for each system and determined the energy barrier for intermolecular conversion between isomers for various species with different content of hydrogen. All these results are valuable and informative for understanding the surface chemistry of hydrogenation of α, β-unsaturated aldehydes.

Graphical Abstract


Gas-phase kinetics Reaction intermediates Isomerization Hydrogenation 



Financial supports from NSFC No. 20573052 and 20973090, 973 Program 2009CB623504 and 2011CB808604 are acknowledged.

Supplementary material

10562_2011_755_MOESM1_ESM.doc (430 kb)
Supplementary material 1 (DOC 429 kb)


  1. 1.
    Gallezot P, Richard D (1998) Catal Rev Sci Eng 40:81CrossRefGoogle Scholar
  2. 2.
    Marinelli TBLW, Nabuurs S, Ponec V (1995) J Catal 151:431CrossRefGoogle Scholar
  3. 3.
    Mohr C, Hofmeister H, Radnik J, Claus P (2003) J Am Chem Soc 125:1905CrossRefGoogle Scholar
  4. 4.
    Claus P (1998) Top Catal 5:51CrossRefGoogle Scholar
  5. 5.
    Claus P, Hofmeister H, Mohr C (2004) Gold Bull 37:181CrossRefGoogle Scholar
  6. 6.
    Claus P (2005) Appl Catal A 291:222CrossRefGoogle Scholar
  7. 7.
    Lim KH, Chen ZX, Neyman KM, Rosch N (2006) Chem Phys Lett 420:60CrossRefGoogle Scholar
  8. 8.
    Loffreda D, Delbecq F, Vigne F, Sautet P (2006) J Am Chem Soc 128:1316CrossRefGoogle Scholar
  9. 9.
    He X, Chen ZX, Kang GJ (2009) J Phys Chem C 113:12325CrossRefGoogle Scholar
  10. 10.
    Lim KH, Mohammad AB, Yudanov IV, Neyman KM, Bron M, Claus P, Rösch N (2009) J Phys Chem C 113:13231CrossRefGoogle Scholar
  11. 11.
    Li Z, Chen ZX, He X, Kang GJ (2010) J Chem Phys 132:184702CrossRefGoogle Scholar
  12. 12.
    Kang GJ, Chen ZX, Li Z (2011) Catal Lett 141:996CrossRefGoogle Scholar
  13. 13.
    Mohr C, Hofmeister N, Lucas M, Claus P (2000) Chem Eng Technol 23:324CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  15. 15.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B 48:4978(E)CrossRefGoogle Scholar
  16. 16.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA (2004) Gaussian 03, Revision D.01, Gaussian, Inc., WallingfordGoogle Scholar
  17. 17.
    Delbecq F, Sautet P (2002) J Catal 211:398Google Scholar
  18. 18.
    Blom CE, Grassi G, Bauder A (1984) J Am Chem Soc 106:7427CrossRefGoogle Scholar
  19. 19.
    FitzPatrick BL, Lau KC, Butler LJ, Lee SH, Lin JJM (2008) J Chem Phys 129Google Scholar
  20. 20.
    Delbecq F, Sautet P (2002) J Catal 211:39Google Scholar
  21. 21.
    Jensen F (2007) Introduction to computational chemistry. Wiley, New YorkGoogle Scholar
  22. 22.
    Li Z, Ding WP, Kang GJ, Chen ZX (2012) Catal Commun 17:164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Low Carbon Energy InstituteChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations