Skip to main content

Advertisement

Log in

A Highly Selective Pd(OAc)2/Pyridine/K2CO3 System for Oxidation of Terpenic Alcohols by Dioxygen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Molecular sieves, complex organic bases and radical oxidants are commonly used in alcohols oxidation reactions. In this work, we have evaluated the beneficial effects of addition of K2CO3 to Pd(II)-catalyzed oxidation alcohols, which resulted in a remarkable increase in the oxidation reaction rates without selectivity losses. Herein, in a metallic reoxidant-free system, terpenic alcohols (β-citronellol, nerol and geraniol) were selectively converted into respective aldehydes from Pd(II)-catalyzed oxidation reactions in presence of dioxygen. High conversions and selectivities (greater than 90%) were achieved in the presence of the Pd(OAc)2/K2CO3 catalyst and pyridine excess. The exogenous role of others auxiliary anionic and nitrogen compounds was appraised.

Graphical Abstract

Reaction conditions: β-citronellol (2.75 mmol); Pd(OAc)2 (0.05 mmol); pyridine (5.0 mmol); K2CO3 (2.5 mmol); toluene (10 mL); MS3A (0.5 g); O2 (0.10 MPa); 60 °C.

Comparison of systems used in Pd(OAc)2-catayzed oxidation of β-citronellol by dioxygen

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Muzart J (2003) Tetrahedron 59:5789

    Article  CAS  Google Scholar 

  2. Gallezot P (2007) Catal Today 121:76

    Article  CAS  Google Scholar 

  3. Pybus DH, Sell CS (2001) The chemistry of fragrances. RSC Paperbacks, Cambridge

    Google Scholar 

  4. Lenardão EJ, Botteselle GV, Azambuja F, Perin G, Jacob RG (2007) Tetrahedron 63:6671

    Article  Google Scholar 

  5. Yoji H, Takeshi I, Yoshiki O (2002) European Patent EP122516, 2002

  6. Brennfhrer A, Neumann H, Beller M (2009) ChemCatChem 1:28

    Article  Google Scholar 

  7. da Silva MJ, Teixeira RR, Carari DM (2009) J Organomet Chem 694:3254

    Article  CAS  Google Scholar 

  8. da Silva MJ, de Oliveira AA, da Silva ML (2009) Catal Lett 130:424

    Article  Google Scholar 

  9. da Silva MJ, Gusevskaya EV (2001) J Mol Catal A 176:23

    Article  CAS  Google Scholar 

  10. Bäckvall JE, Gogoll AJ (1987) J Chem Soc Chem Commun 1236

  11. Peterson KP, Larock RC (1998) J Org Chem 63:3185

    Article  CAS  Google Scholar 

  12. Bagdanoff JT, Ferreira EM, Stoltz BM (2003) Org Lett 5:835

    Article  CAS  Google Scholar 

  13. Stoltz BM (2004) Chem Lett 33:362

    Article  CAS  Google Scholar 

  14. Schultz MJ, Park CC, Sigman MS (2002) Chem Commun 3034

  15. Nishimura T, Onoue T, Ohe K, Uemura S (1998) Tetrahedron Lett 39:6011

    Article  CAS  Google Scholar 

  16. Nishimura T, Kakiuchi N, Onoue T, Ohe K, Uemura S (2000) J Chem Soc. Perkin Trans 1:1915

    Google Scholar 

  17. Nishimura T, Onoue T, Ohe K, Uemura S (1999) J Org Chem 64:6750

    Article  CAS  Google Scholar 

  18. Nishimura T, Maeda Y, Kakiuchi N, Uemura S (2000) J Chem Soc. Perkin Trans 1:4301

    Google Scholar 

  19. Kumpulainen ETT, Koskinen AMP (2009) Chem Eur J 15:10901

    Article  CAS  Google Scholar 

  20. Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) Chem Rev 5318

  21. Milstein D (2010) Top Catal 53:915

    Article  CAS  Google Scholar 

  22. Mandal SK, Jensen DR, Pugsley JS, Sigman MS (2003) J Org Chem 68:4600

    Article  CAS  Google Scholar 

  23. Steinhoff BA, Guzei IA, Stahl SS (2004) J Am Chem Soc 126:11268

    Article  CAS  Google Scholar 

  24. Gligorich KM, Sigman MS (2009) Chem Commun 3854

  25. Cornell CN, Sigman MS (2006) Org Lett 8:4117

    Article  CAS  Google Scholar 

  26. Neumann D, Krauss G, Hieke M, Groger D (1983) Plant Med 48:20

    Article  CAS  Google Scholar 

  27. Lide DR (ed) (1999) CRC handbook of chemistry and physics, 80th edn. CRC Press, Boca Raton

    Google Scholar 

  28. Muzart J (2009) J Mol Catal A 308:15

    Article  CAS  Google Scholar 

  29. Ringsdoff H, Schlarb B, Venzmer J (1988) Angew Chem Int Ed 27:113

    Article  Google Scholar 

  30. Grushin VV, Alper H (1993) Organometallics 12:1890

    Article  CAS  Google Scholar 

  31. Schultz MJ, Hamilton SS, Jensen DR, Sigman MS (2005) J Org Chem 70:3343

    Article  CAS  Google Scholar 

  32. Steinhoff BA, King AE, Stahl SS (2006) J Org Chem 71:1861

    Article  CAS  Google Scholar 

  33. Nishimura T, Uemura S (2000) Catal Surv Jpn 4:31

    Article  Google Scholar 

  34. Ferreira EM, Stoltz BM (2001) J Am Chem Soc 123:7725

    Article  CAS  Google Scholar 

  35. Popp BV, Stahl SS (2007) J Am Chem Soc 129:4410

    Article  CAS  Google Scholar 

  36. Popp BV, Stahl SS (2009) Chem Eur J 15:2915

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CAPES, CNPq, FAPEMIG and FUNARBE (Brazil). They also wish to thank Prof. Luis Claudio Barbosa for the GC–MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danieli M. Carari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carari, D.M., da Silva, M.J. A Highly Selective Pd(OAc)2/Pyridine/K2CO3 System for Oxidation of Terpenic Alcohols by Dioxygen. Catal Lett 142, 251–258 (2012). https://doi.org/10.1007/s10562-011-0754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0754-4

Keywords

Navigation