Advertisement

Catalysis Letters

, Volume 142, Issue 1, pp 32–41 | Cite as

Synthesis of Highly Effective CeO x –MnO y –BaO Catalysts for Direct NO Decomposition

  • Won-Jong Hong
  • Mao Ueda
  • Shinji Iwamoto
  • Saburo Hosokawa
  • Kenji Wada
  • Masashi Inoue
Article

Abstract

Ce–Mn mixed oxides with a Mn/(Ce + Mn) molar ratio of 0.25 were prepared by solvothermal (ST-1) and co-precipitation (CP) methods, and Ba was loaded on the Ce–Mn oxides. In addition, CeO2–MnO x –BaO catalysts with various compositions were directly prepared by the solvothermal (ST-2) method. The NO decomposition activities of these catalysts were examined. Among the catalysts examined, the ST-2 catalyst having a nominal composition of Ce0.8Mn0.15Ba0.05O x exhibited the highest activity; 77% NO conversion to N2 was attained at 800 °C. These catalysts were characterized by X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The Raman and XPS results indicate that the CP catalyst had larger amounts of the BaMnO3-δ and/or Mn3O4 phases. The ST-1 and ST-2 catalysts had highly dispersed Ba species on the surface. The ST-2 catalyst had Mn species with the lowest binding energy of Mn 2p and also had a high population of oxygen vacancies in the ceria lattice, suggesting that Mn species with a low oxidation state contributes to the formation of oxygen vacancies, which play an important role in this reaction.

Graphical Abstract

Keywords

Ceria Manganese oxide Barium Mixed oxide catalysts Direct NO decomposition Solvothermal method 

Notes

Acknowledgments

We are grateful to Prof. Takeshi Abe of Kyoto University for his help in Raman spectra measurements and Dr. Seiichiro Imamura and Dr. Hiroyoshi Kanai of Kyoto University for their invaluable advice.

References

  1. 1.
    Trovarelli A (1996) Catal Rev Sci Eng 38:439CrossRefGoogle Scholar
  2. 2.
    Chen H, Sayari A, Adnot A, Larachi F (2001) Appl Catal B 32:195CrossRefGoogle Scholar
  3. 3.
    Qi GS, Yang RT, Chang R (2004) Appl Catal B 51:93CrossRefGoogle Scholar
  4. 4.
    Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158CrossRefGoogle Scholar
  5. 5.
    Rao T, Shen MQ, Jia LW, Hao JJ, Wang J (2007) Catal Commun 8:1743CrossRefGoogle Scholar
  6. 6.
    Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) Appl Catal B 62:265CrossRefGoogle Scholar
  7. 7.
    Yu DQ, Liu Y, Wu ZBA (2010) Catal Commun 11:788CrossRefGoogle Scholar
  8. 8.
    Wu YS, Zhang YX, Liu M, Ma ZCC (2010) Catal Today 153:170CrossRefGoogle Scholar
  9. 9.
    Delimaris D, Ioannides T (2008) Appl Catal B 84:303CrossRefGoogle Scholar
  10. 10.
    Qi GS, Yang RT (2004) J Phys Chem B 108:15738CrossRefGoogle Scholar
  11. 11.
    Kaneko H, Miura T, Ishihara H, Taku S, Yokoyama T, Nakajima H, Tamaura Y (2007) Energy 32:656CrossRefGoogle Scholar
  12. 12.
    Amirnazmi A, Benson JE, Boudart M (1973) J Catal 30:55CrossRefGoogle Scholar
  13. 13.
    Wu RJ, Chou TY, Yeh CT (1995) Appl Catal B 6:105CrossRefGoogle Scholar
  14. 14.
    Miller DD, Chuang SSC (2009) J Phys Chem C 113:14963CrossRefGoogle Scholar
  15. 15.
    Winter ERS (1971) J Catal 22:158CrossRefGoogle Scholar
  16. 16.
    Huang SJ, Walters AB, Vannice MA (2000) J Catal 192:29CrossRefGoogle Scholar
  17. 17.
    Iwamoto M, Yahiro H, Mine Y, Kagawa S (1989) Chem Lett 18:213CrossRefGoogle Scholar
  18. 18.
    Iwamoto M, Hamada H (1991) Catal Today 10:57CrossRefGoogle Scholar
  19. 19.
    Groothaert MH, Bokhoven JA, Battiston AA, Weckhuysen BM, Schoonheydt RA (2003) J Am Chem Soc 125:7629CrossRefGoogle Scholar
  20. 20.
    Park PW, Kil JK, Kung HH, Kung MC (1998) Catal Today 42:51CrossRefGoogle Scholar
  21. 21.
    Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Appl Catal B 46:473CrossRefGoogle Scholar
  22. 22.
    Teraoka Y, Fukuda H, Kagawa S (1990) Chem Lett 19:1CrossRefGoogle Scholar
  23. 23.
    Teraoka Y, Harada T, Kagawa S (1998) J Chem Soc Faraday Trans 94:1887CrossRefGoogle Scholar
  24. 24.
    Ishihara T, Ando M, Sada K, Takiishi K, Yamada K, Nishiguchi H, Takita Y (2003) J Catal 220:104CrossRefGoogle Scholar
  25. 25.
    Iwakuni H, Shinmyou Y, Yano H, Matsumoto H, Ishihara T (2007) Appl Catal B 74:299CrossRefGoogle Scholar
  26. 26.
    Zhu JJ, Xiao DH, Li J, Yang XG (2009) Catal Lett 129:240CrossRefGoogle Scholar
  27. 27.
    Imanaka N, Masui T, Masaki H (2007) Adv Mater 19:3660CrossRefGoogle Scholar
  28. 28.
    Tsujimoto S, Mima K, Masui T, Imanaka N (2010) Chem Lett 39:456CrossRefGoogle Scholar
  29. 29.
    Goto K, Matsumoto H, Ishihara T (2009) Top Catal 52:1776CrossRefGoogle Scholar
  30. 30.
    Iwamoto S, Yasuda T, Inoue M (2002) Adv Technol Mater Mater Proc J 4:58Google Scholar
  31. 31.
    Iwamoto S, Takahashi R, Inoue M (2007) Appl Catal B 70:146CrossRefGoogle Scholar
  32. 32.
    Hong W-J, Iwamoto S, Inoue M (2011) Catal Today 164:489CrossRefGoogle Scholar
  33. 33.
    Inoue M, Nishikawa T, Otsu H, Kominami H, Inui T (1998) J Am Ceram Soc 81:1173CrossRefGoogle Scholar
  34. 34.
    Inoue M, Nishikawa T, Kominami H, Inui T (2000) J Mater Sci 35:1541CrossRefGoogle Scholar
  35. 35.
    Hosokawa S, Iwamoto S, Inoue M (2008) Mater Res Bull 43:3140CrossRefGoogle Scholar
  36. 36.
    Hong W-J, Iwamoto S, Hosokawa S, Wada K, Kanai H, Inoue M (2011) J Catal 277:208CrossRefGoogle Scholar
  37. 37.
    Hong W-J, Iwamoto S, Inoue M (2010) Catal Lett 135:190CrossRefGoogle Scholar
  38. 38.
    Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Minnesota, p 139Google Scholar
  39. 39.
    Lopez-Navarrete E, Caballero A, Gonzalez-Elipe AR, Ocana M (2004) J Eur Ceram Soc 24:3057CrossRefGoogle Scholar
  40. 40.
    Imamura S, Shono M, Okamoto N, Hamada A, Ishida S (1996) Appl Catal A 142:279CrossRefGoogle Scholar
  41. 41.
    Reddy BM, Khan A (2005) Catal Surv Asia 9:155CrossRefGoogle Scholar
  42. 42.
    Arena F, Trunfio G, Negro J, Fazio B, Spadaro L (2007) Chem Mater 19:2269CrossRefGoogle Scholar
  43. 43.
    Nakajima A, Yoshihara A, Ishigame M (1994) Phys Rev B 50:13297CrossRefGoogle Scholar
  44. 44.
    Gao T, Norby P, Krumeich F, Okamoto H, Nesper R, Fjellvag H (2010) J Phys Chem C 114:922CrossRefGoogle Scholar
  45. 45.
    Roy C, Budhani RC (1998) Phys Rev B 58:8174CrossRefGoogle Scholar
  46. 46.
    Hong W-J, Iwamoto S, Hosokawa S, Wada K, Kanai H, Inoue M (2011) Appl Catal B 106:142Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Won-Jong Hong
    • 1
  • Mao Ueda
    • 1
  • Shinji Iwamoto
    • 2
  • Saburo Hosokawa
    • 1
  • Kenji Wada
    • 1
  • Masashi Inoue
    • 1
  1. 1.Department of Energy and Hydrocarbon Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of Chemistry and Chemical Biology, Graduate School of EngineeringGunma UniversityKiryuJapan

Personalised recommendations