Advertisement

Catalysis Letters

, 141:1621 | Cite as

A Cyclic Catalyst Pretreatment in CO2 for High Yield Production of Carbon Nanofibers with Narrow Diameter Distribution

  • Steven Corthals
  • Jasper Van Noyen
  • Duoduo Liang
  • Xiaoxing Ke
  • Gustaaf Van Tendeloo
  • Pierre Jacobs
  • Bert Sels
Article

Abstract

This paper presents a cyclic catalyst pretreatment process to improve the CNF yield with narrow size distribution by sequentially feeding the CVD reactor with CH4/CO2 mixtures (carbon deposition) and CO2 (carbon removal) prior to the actual growth process. A mechanism based on a break-up of large Ni particles tentatively explains the beneficial effect of the cyclic carbon deposition/removal CVD procedure.

Graphical Abstract

A cyclic catalytic CVD process for the one-step production of CNFs from CH4/CO2 mixtures is presented. Successive carbon deposition/removal cycles in CO2 rich conditions lead to high quality CNFs with narrow size distribution.

Keywords

Carbon nanofiber Carbon nanotube Artificial biogas mixture Chemical vapor deposition CO2 usage 

Notes

Acknowledgements

S.C. acknowledges a Ph.D grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). J.V.N. acknowledges CARBonCHIP (EUFP6 STREP program) for financial support. S.C. and J.V.N. thank Rudy De Vos for his advice during SEM measurements (Department of Metallurgy and Materials Engineering, K.U.Leuven). This research is also sponsored by the following research programmes: IAP-PAI by BELSPO (Belgian Federal Government), GOA, CECAT and long term structural Methusalem funding (Flemish Regional Government).

Supplementary material

10562_2011_690_MOESM1_ESM.doc (404 kb)
Supplementary material 1 (DOC 404 kb)

References

  1. 1.
    Xia W, Naumann d’Alnoncourt R, Muhler M (2007) Chem Ing Technol 79:721CrossRefGoogle Scholar
  2. 2.
    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507CrossRefGoogle Scholar
  3. 3.
    Rao CNR, Satishkumar BC, Govindaraj A, Nath M (2001) Chem Phys Chem 2:78CrossRefGoogle Scholar
  4. 4.
    Avouris P, Chen Z, Perebeinos V (2007) Nat Nanotechnol 2:605CrossRefGoogle Scholar
  5. 5.
    Ajayan PM (1999) Chem Rev 99:1787CrossRefGoogle Scholar
  6. 6.
    De Jong KP, Geus JW (2000) Catal Rev-Sci Eng 42:481CrossRefGoogle Scholar
  7. 7.
    Dai H (2002) Acc Chem Res 35:1035CrossRefGoogle Scholar
  8. 8.
    Dupuis AC (2005) Prog Mater Sci 50:929CrossRefGoogle Scholar
  9. 9.
    Grobert N (2007) Mater Today 10:28CrossRefGoogle Scholar
  10. 10.
    Vivekchand SR, Jayakanth R, Govindaraj A, Rao CNR (2005) Small 1:920CrossRefGoogle Scholar
  11. 11.
    Verdejo R, Lamoriniere S, Cottam B, Bismarck A, Shaffer M (2007) Chem Commun 5:513CrossRefGoogle Scholar
  12. 12.
    Ebbesen TW, Ajayan PM (1992) Nature 358:220CrossRefGoogle Scholar
  13. 13.
    Hiura H, Ebbesen TW, Tanigaki K (1995) Adv Mater 7:275CrossRefGoogle Scholar
  14. 14.
    Chen YK, Green MLH, Griffin JL, Hammer J, Lago RM, Tsang SC (1996) Adv Mater 8:1012CrossRefGoogle Scholar
  15. 15.
    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Science 306:1362CrossRefGoogle Scholar
  16. 16.
    Futaba DN, Hata K, Yamada T, Mizuno K, Yumura M, Iijima S (2005) Phys Rev Lett 95:056104CrossRefGoogle Scholar
  17. 17.
    Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbons J, Dai H (2005) Proc Am Chem Soc 102:16141Google Scholar
  18. 18.
    Magrez A, Seo JW, Kuznetsov VL, Forró L (2007) Angew Chem Int Ed 46:441CrossRefGoogle Scholar
  19. 19.
    Wen Q, Qian W, Wei F, Liu Y, Ning G, Zhang Q (2007) Chem Mater 19:1226CrossRefGoogle Scholar
  20. 20.
    Tsang SC, Harris PJF, Green MLH (1993) Nature 362:520CrossRefGoogle Scholar
  21. 21.
    Corthals S, Van Noyen J, Geboers J, Vosch T, Liang D, Ke X, Hofkens J, Van Tendeloo G, Sels B, Jacobs P (2011) Low Temperature Synthesis of High Quality Carbon Nanofibers and thin MWCNTs from CH4 over Ni Catalysts: the beneficial effect of CO2 accepted for publication in carbonGoogle Scholar
  22. 22.
    Pinilla JL, de Llobet S, Suelves I, Utrilla R, Lázaro MJ, Moliner R (2011) Fuel 90:2245CrossRefGoogle Scholar
  23. 23.
    Corthals S, Van Nederkassel J, De Winne H, Geboers J, Jacobs P, Sels B (2011) Appl Catal B 105:263CrossRefGoogle Scholar
  24. 24.
    Corthals S, Van Nederkassel J, Geboers J, De Winne H, Van Noyen J, Moens B, Sels B, Jacobs P (2008) Catal Today 138:28CrossRefGoogle Scholar
  25. 25.
    Corthals S, Witvrouwen T, Jacobs P, Sels B (2011) Catal Today 159:12CrossRefGoogle Scholar
  26. 26.
    Bradford MCJ, Vannice MA (1999) Catal Rev-Sci Eng 41:1CrossRefGoogle Scholar
  27. 27.
    Edwards JH, Maitra AM (1995) Fuel Process Technol 42:269CrossRefGoogle Scholar
  28. 28.
    Ito M, Tagawa T, Goto S (1999) Appl Catal A 177:15CrossRefGoogle Scholar
  29. 29.
    Wang JB, Wu YS, Huang TJ (2004) Appl Catal A 272:289CrossRefGoogle Scholar
  30. 30.
    Chen D, Christensen KO, Ochoa-Fernández E, Yu Z, Tøtdal B, Latorre N, Monzon A, Holmen A (2005) J Catal 229:82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Steven Corthals
    • 1
  • Jasper Van Noyen
    • 1
    • 3
  • Duoduo Liang
    • 2
  • Xiaoxing Ke
    • 2
  • Gustaaf Van Tendeloo
    • 2
  • Pierre Jacobs
    • 1
  • Bert Sels
    • 1
  1. 1.K.U. Leuven, Centre for Surface Chemistry and CatalysisHeverleeBelgium
  2. 2.Electron Microscopy for Materials Science (EMAT), Universiteit AntwerpenAntwerpenBelgium
  3. 3.Flemish Institute for Technological Research (VITO)Boeretang 200Belgium

Personalised recommendations