Catalysis Letters

, Volume 141, Issue 12, pp 1838–1844 | Cite as

Brønsted Acidic Ionic Liquids Mediated Metallic Salts Catalytic System for the Chemical Fixation of Carbon Dioxide to Form Cyclic Carbonates



The catalysts of COOH- and SO3H-functionalized ionic liquids mediated metallic salts had been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates under mild reaction conditions without using additional organic solvents. The effects of different ionic liquids, metallic salts, varying the molar ratio of ionic liquid to metallic salt and reaction conditions were examined. The excellent yield of cyclic carbonates and the high turnover frequencies (TOF) were obtained at the optimum reaction conditions. In addition, the catalytic system offered high stability and reusability.

Graphical Abstract

The catalysts of Brønsted acidic ionic liquids mediated metallic salts had been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions. Additional, this catalyst system also offers the advantages of recyclability and reusability.


Brønsted acidic ionic liquids Carbon dioxide Epoxide Cyclic carbonate 



We are grateful to the Chinese National Sciences Foundation (No. 21006021), the Natural Science Foundation of Heilongjiang Province of China (No. ZD200820-02), Science & Technology Plan of Heilongjiang Province of China (No. GZ08A402) and Science & Technology Reseach Foundation of Heilongjiang Province Education Bureau of China (No. 11531266) for the financial support.


  1. 1.
    Sakakura T, Choi JC, Yasuda H (2007) Chem Rev 107:2365CrossRefGoogle Scholar
  2. 2.
    Shi M, Shen YM (2003) Curr Org Chem 7:737CrossRefGoogle Scholar
  3. 3.
    Darensbourg DJ (2007) Chem Rev 107:2388CrossRefGoogle Scholar
  4. 4.
    North M, Pasquale R, Young C (2010) Green Chem 12:1514CrossRefGoogle Scholar
  5. 5.
    Sakakura T, Kohno K (2009) Chem Commun 1312Google Scholar
  6. 6.
    Leitner W (1996) Coord Chem Rev 153:257CrossRefGoogle Scholar
  7. 7.
    Yin X, Moss JR (1999) Coord Chem Rev 181:27CrossRefGoogle Scholar
  8. 8.
    Biggadike K, Angell RM, Burgess CM, Farrekk RM, Weston HE (2000) J Med Chem 43:19CrossRefGoogle Scholar
  9. 9.
    Dai WL, Luo SZ, Yin SF, Au CT (2009) Appl Catal A 366:2CrossRefGoogle Scholar
  10. 10.
    Kihara N, Hara N, Endo T (1993) J Org Chem 58:6198CrossRefGoogle Scholar
  11. 11.
    Huang JW, Shi M (2003) J Org Chem 68:6705CrossRefGoogle Scholar
  12. 12.
    Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) J Am Chem Soc 121:4526CrossRefGoogle Scholar
  13. 13.
    Ulusoy M, Şahin O, Kilic A, Büyükgüngör O (2011) Catal Lett 141:717CrossRefGoogle Scholar
  14. 14.
    Decortes A, Belmonte MM, Benet-Buchholza J, Kleij AW (2010) Chem Commun 46:4580CrossRefGoogle Scholar
  15. 15.
    Kruper WJ, Dellar DV (1995) J Org Chem 60:725CrossRefGoogle Scholar
  16. 16.
    Li FW, Xia CG, Xu LW, Sun W, Chen GX (2003) Chem Comm 2042Google Scholar
  17. 17.
    North M, Pasquale R (2009) Angew Chem Int Ed 48:2946CrossRefGoogle Scholar
  18. 18.
    Lu XB, Liang B, Zhang YJ, Tian YZ, Wang YM, Bai CX, Wang H, Zhang R (2004) J Am Chem Soc 126:3732CrossRefGoogle Scholar
  19. 19.
    Clegg W, Harrington RW, North M, Pasquale R (2010) Chem Eur J 16:6828CrossRefGoogle Scholar
  20. 20.
    Du Y, Cai F, Kong DL, He LN (2005) Green Chem 7:518CrossRefGoogle Scholar
  21. 21.
    Caló V, Nacci A, Monopoli A, Fanizzi A (2002) Org Lett 4:2561CrossRefGoogle Scholar
  22. 22.
    Yasuda H, He LN, Sakakura T, Hu C (2005) J Catal 233:119CrossRefGoogle Scholar
  23. 23.
    Du Y, Wang JQ, Chen JY, Cai F, Tian JS, Kong DL, He LN (2006) Tetrahedron Lett 47:1271CrossRefGoogle Scholar
  24. 24.
    Sit WN, Ng SM, Kwong KY, Lau CP (2005) J Org Chem 70:8583CrossRefGoogle Scholar
  25. 25.
    Zhou Y, Hu S, Ma X, Liang S, Jiang T, Han B (2008) J Mol Catal A 284:52CrossRefGoogle Scholar
  26. 26.
    Sun J, Wang L, Zhang S, Li Z, Zhang X, Dai W (2006) J Mol Catal A 256:295CrossRefGoogle Scholar
  27. 27.
    Shi F, Zhang Q, Ma Y, He Y, Deng Y (2005) J Am Chem Soc 127:4182CrossRefGoogle Scholar
  28. 28.
    Xiong YB, Wang H, Wang RM, Yan YF, Zheng B, Wang YP (2010) Chem Commun 46:3399CrossRefGoogle Scholar
  29. 29.
    Peng JJ, Deng Y (2010) New J Chem 25:639CrossRefGoogle Scholar
  30. 30.
    Zhu A, Jiang T, Han B, Zhang J, Xie Y, Ma X (2007) Green Chem 9:169CrossRefGoogle Scholar
  31. 31.
    Kim HS, Kim JJ, Kim H, Jang HG (2003) J Catal 220:44CrossRefGoogle Scholar
  32. 32.
    Li FW, Xiao LF, Xia CG, Hu B (2004) Tetrahedron Lett 45:8307CrossRefGoogle Scholar
  33. 33.
    Xiao LF, Li FW, Peng JJ, Xia CG (2006) J Mol Catal A 253:265CrossRefGoogle Scholar
  34. 34.
    Ono F, Qiao K, Tomida D, Yokoyama C (2007) Appl Catal A 333:107CrossRefGoogle Scholar
  35. 35.
    Dai WL, Chen L, Yin SF, Li WH, Zhang YY, Luo SL, Au CT (2010) Catal Lett 137:74CrossRefGoogle Scholar
  36. 36.
    Fujita SI, Nishiura M, Arai M (2010) Catal Lett 135:263CrossRefGoogle Scholar
  37. 37.
    Lee B, Nan HK, Byoung SA, Cheong M, Hoon SK, Je SL (2007) Bull Korean Chem Soc 28:2025CrossRefGoogle Scholar
  38. 38.
    Zhou HC, Yang J, Ye LM, Lin HQ, Yuan YZ (2010) Green Chem 12:661CrossRefGoogle Scholar
  39. 39.
    Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH (2002) J Am Chem Soc 124:5962CrossRefGoogle Scholar
  40. 40.
    Lkhazdooz ARH, Ruoho AE (2008) Catal Commun 9:89CrossRefGoogle Scholar
  41. 41.
    Wang HM, Cui P, Zou G, Yang F, Tang J (2006) Tetrahedron 62:3985CrossRefGoogle Scholar
  42. 42.
    Wang WJ, Shao LL, Cheng WP, Yang JG, He MY (2008) Catal Commun 9:337CrossRefGoogle Scholar
  43. 43.
    Reddy S, Kanjilal S, Sunitha S, Prasad RBN (2007) Tetrahedron Lett 48:8807CrossRefGoogle Scholar
  44. 44.
    Hajipour AR, Rafieea F, Ruohob AE (2007) Synlett 1118Google Scholar
  45. 45.
    Yang L, Xu LW, Xia CG (2009) Synthesis 1969Google Scholar
  46. 46.
    Shen YM, Duan WL, Shi M (2004) Eur J Org Chem 14:3080CrossRefGoogle Scholar
  47. 47.
    Li DM, Shi F, Guo S, Deng YQ (2004) Tetrahedron Lett 45:265CrossRefGoogle Scholar
  48. 48.
    Xie HB, Li SH, Zhang SB (2006) J Mol Catal A 250:30CrossRefGoogle Scholar
  49. 49.
    Sun JM, Fujita SI, Arai M (2005) J Organomet Chem 690:3490CrossRefGoogle Scholar
  50. 50.
    Lazarin AM, Gushikem Y, De Castro SC (2000) J Mater Chem 10:2526CrossRefGoogle Scholar
  51. 51.
    Addock RL, Nguyen ST (2001) J Am Chem Soc 123:11498CrossRefGoogle Scholar
  52. 52.
    Nomura R, Kimura M, Teshima S, Ninagawa A, Matsuda H (1982) Bull Chem Soc Jpn 55:3200CrossRefGoogle Scholar
  53. 53.
    Barkakaty B, Morino K, Sudo A, Endo T (2010) Green Chem 12:42CrossRefGoogle Scholar
  54. 54.
    Zhou YX, Hu SQ, Ma XM, Liang SG, Jiang T, Han BX (2008) J Mol Catal A 284:52CrossRefGoogle Scholar
  55. 55.
    Wu SS, Zhang XW, Dai WL, Yin SF, Li WS, Ren YQ, Au CT (2008) Appl Catal A 341:106CrossRefGoogle Scholar
  56. 56.
    Sun JM, Fujita S, Zhao FY, Arai M (2004) Green Chem 6:613CrossRefGoogle Scholar
  57. 57.
    Kim YJ, Varma RS (2005) J Org Chem 70:7882CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education and Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material SciencesHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations