Advertisement

Catalysis Letters

, 141:1472 | Cite as

Acid Strength of Pt-Zeolite Catalysts: Evidence of Metal-Support Interaction from Linear Free-Energy Relationship

  • Roberta C. Tourinho
  • Igor F. de Oliveira
  • Pedro A. Arroyo
  • Claudio J. A. Mota
Article

Abstract

The acid strength of Pt-HBeta and Pt-HMordenite zeolite catalysts were estimated by H/D exchange of substituted benzenes with the use of linear free-energy relationship, through the use of the Hammet–Brown equation. The results indicated that compared with the parent acidic zeolite, the incorporation of Pt metal leads to a significant decrease in the acid strength, estimated by the slope (ρ) of the logarithm of the relative rate (k X/k H) with the σ+ constant of the substituent, indicating a lower degree of proton transfer to the ring in the transition state. The results support the model of metal-support interaction in Pt-zeolite catalyst, with formation of a metal-proton adduct.

Graphical Abstract

Keywords

Zeolites Acid strength Catalysis Linear free-energy relationship 

Notes

Acknowledgment

Authors thank financial support from CNPq, FAPERJ and PRH/ANP.

References

  1. 1.
    Galadima A, Anderson JA, Wells RPK (2009) Sci World J 4:15Google Scholar
  2. 2.
    Stakheev AY, Sachtler WMH (1991) J Chem Soc Faraday Trans 87:3703CrossRefGoogle Scholar
  3. 3.
    Sachtler WMH (1993) Acc Chem Res 26:383CrossRefGoogle Scholar
  4. 4.
    Ramaker DE, de Graaf J, van Veen JAR, Koningsberger DC (2001) J Catal 203:7CrossRefGoogle Scholar
  5. 5.
    Mojet BL, Miller JT, Ramaker DE, Koningsberger DC (1999) J Catal 186:373CrossRefGoogle Scholar
  6. 6.
    Ramaker DE, de Graaf J, van Veen JAR, Koningsberger DC (2001) J Catal 203:7CrossRefGoogle Scholar
  7. 7.
    Koningsberger DC, de Graaf J, Mojet BL, Ramaker DE, Miller JT (2000) Appl Catal A 191:205CrossRefGoogle Scholar
  8. 8.
    Gonçalves VLC, Rodrigues RC, Lorençatto R, Mota CJA (2007) J Catal 248:158CrossRefGoogle Scholar
  9. 9.
    Parrillo DJ, Gorte RJ (1993) J Phys Chem 97:8786CrossRefGoogle Scholar
  10. 10.
    Biaglow AI, Parrillo DJ, Kokotailo GT, Gorte RJ (1994) J Catal 148:213CrossRefGoogle Scholar
  11. 11.
    Jiménez C, Romero FJ, Roldán R, Marinas JM, Gómez JP (2003) Appl Catal A 249:175CrossRefGoogle Scholar
  12. 12.
    Kubicka D, Kumar N, Vanalainen T, Karhu H, Kubickova I, Osterholm H, Murzin DY (2006) J Phys Chem B 110:4937CrossRefGoogle Scholar
  13. 13.
    Villegas JI, Kubicka D, Karhu H, Osterholm H, Kumar N, Salmi T, Murzin DY (2007) J Mol Catal A 264:192CrossRefGoogle Scholar
  14. 14.
    Vayssilov GN, Gates BC, Rosch N (2003) Angew Chem Int Ed Eng 42:1391CrossRefGoogle Scholar
  15. 15.
    Vayssilov GN, Rosch N (2005) Phys Chem Chem Phys 7:4019CrossRefGoogle Scholar
  16. 16.
    Shor EAI, Nasluzov VA, Shor AM, Vayssilov GN, Rosch N (2007) J Phys Chem C 111:12340CrossRefGoogle Scholar
  17. 17.
    Mikhailov MN, Kustov LM, Kazansky VB (2008) Catal Lett 120:8CrossRefGoogle Scholar
  18. 18.
    Mota CJA, Bhering DL, Rosenbach N Jr (2004) Angew Chem Int Ed 43:3050CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Roberta C. Tourinho
    • 1
  • Igor F. de Oliveira
    • 1
  • Pedro A. Arroyo
    • 2
  • Claudio J. A. Mota
    • 1
    • 3
  1. 1.Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento Engenharia QuímicaUniversidade Estadual de MaringáMaringáBrazil
  3. 3.INCT Energia e Ambiente, UFRJRio de JaneiroBrazil

Personalised recommendations