Catalysis Letters

, Volume 141, Issue 8, pp 1228–1236 | Cite as

Hydrogen Production by Ethanol Steam Reforming on NiCuMgAl Catalysts Derived from Hydrotalcite-Like Precursors

  • Xiao-Peng Yu
  • Wei Chu
  • Ning Wang
  • Fei Ma


Cu-promoted NiMgAl catalysts derived from hydrotalcites were synthesized by the urea hydrolysis method for ethanol steam reforming. The effect of Cu content on catalytic properties of the NiMgAl catalysts was studied. These catalysts were characterized by X-ray diffraction, thermogravimetric and differential analyses, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and temperature-programmed reduction. The addition of small amounts of Cu to NiMgAl catalysts leads to the increase of surface Ni species and the enhancement of Ni2+ reducibility. The Ni0.5Cu0.1Mg2.4Al catalyst with Cu/Ni ratio of 0.2 exhibits the higher activity and stability, showing no apparent deactivation during 20 h on stream at 700 °C, whereas Ni0.5Mg2.5Al catalyst suffers severe deactivation only after 10 h on stream. This improved performance is closely related to smaller nickel particles well dispersed on the catalyst surface. The Ni0.5Cu0.1Mg2.4Al catalyst exhibits strong resistance to coke formation and the sintering of nickel particles.

Graphical Abstract

NiMgAl and NiCuMgAl catalysts derived from hydrotalcites were synthesized by the urea hydrolysis method for ethanol steam reforming to hydrogen production. The Ni0.5Cu0.1Mg2.4Al catalyst with Cu/Ni ratio of 0.2 revealed the higher activity and stability. This improved performance was closely related to small nickel particles well dispersed on the catalyst surface.


Hydrotalcite-like NiCuMgAl Hydrogen production Ethanol steam reforming Deactivation 



This work was supported by the National Basic Research Program of China (973 Program, No. 2011CB201202) and the National Natural Science Foundation of China (20776089).


  1. 1.
    Guil J, Homs N, Llorca J, Piscina PR (2005) J Phys Chem B 109:10813CrossRefGoogle Scholar
  2. 2.
    Lin SSY, Kim DH, Ha SY (2008) Catal Lett 122:295CrossRefGoogle Scholar
  3. 3.
    Kaddouri A, Mazzocchia C (2009) Catal Lett 131:234CrossRefGoogle Scholar
  4. 4.
    Sau GS, Bianco F, Lanchi M, Liberatore R, Mazzocchia CV, Spadoni A, Tito CA, Tarqui P, Diaz G, Pin F (2010) Int J Hydrog Energy 35:7280CrossRefGoogle Scholar
  5. 5.
    Can FB, Valant AL, Bion N, Epron F, Duprez D (2008) J Phys Chem C 112:14145CrossRefGoogle Scholar
  6. 6.
    Ciambelli P, Palma V, Ruggiero A (2010) Appl Catal B 96:18CrossRefGoogle Scholar
  7. 7.
    Cai WJ, Wang FG, Zhan ES, Van Veen AC, Mirodatos C, Shen WJ (2008) J Catal 257:96CrossRefGoogle Scholar
  8. 8.
    Liberatori JWC, Ribeiro RU, Zanchet D, Noronha FB, Bueno JMC (2007) Appl Catal A 327:197CrossRefGoogle Scholar
  9. 9.
    Huang LH, Xie J, Chu W, Chen RR, Chu D, Hsu AT (2009) Catal Commun 10:502CrossRefGoogle Scholar
  10. 10.
    Alberton AL, Souza MMVM, Schmal M (2007) Catal Today 123:257CrossRefGoogle Scholar
  11. 11.
    Fajardo HV, Probst LFD, Carreño NLV, Garcia ITS, Valentini A (2007) Catal Lett 119:228CrossRefGoogle Scholar
  12. 12.
    Fatsikostas AN, Verykios XE (2004) J Catal 225:439CrossRefGoogle Scholar
  13. 13.
    Marino F, Boveri M, Baronetti G, Laborde M (2004) Int J Hydrog Energy 29:67CrossRefGoogle Scholar
  14. 14.
    Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S (2004) Catal Commun 5:611CrossRefGoogle Scholar
  15. 15.
    Parizotto NV, Rocha KO, Damyanova S, Passos FB, Zanchet D, Marques CMP, Bueno JMC (2007) Appl Catal A 330:12CrossRefGoogle Scholar
  16. 16.
    Resini C, Cavallaro S, Frusteri F, Freni S, Busca G (2007) React Kinet Catal Lett 90:117CrossRefGoogle Scholar
  17. 17.
    Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Int J Hydrog Energy 31:555CrossRefGoogle Scholar
  18. 18.
    Nurunnabi M, Fujimoto K, Suzuki K, Li B, Kado S, Kunimori K, Tomishige K (2006) Catal Commun 7:73CrossRefGoogle Scholar
  19. 19.
    Vizcaino AJ, Carrero A, Calles JA (2007) Int J Hydrog Energy 32:1450CrossRefGoogle Scholar
  20. 20.
    Vizcaino AJ, Arena P, Baronetti G, Carcero A, Calles JA, Laborde MA, Amadeo N (2008) Int J Hydrog Energy 33:3489CrossRefGoogle Scholar
  21. 21.
    Resini C, Montanari T, Barattini L, Ramis G, Busca G, Presto S, Riani P, Marazza R, Sisani M, Marmottini F, Costantino U (2009) Appl Catal A 355:83CrossRefGoogle Scholar
  22. 22.
    Velu S, Satoh N, Gopinath CS, Suzuki K (2002) Catal Lett 82:145CrossRefGoogle Scholar
  23. 23.
    Busca G, Costantino U, Montanari T, Ramis G, Resini C, Sisani M (2010) Int J Hydrog Energy 35:5356CrossRefGoogle Scholar
  24. 24.
    Holgado MJ, Rives V, San Román MS (2001) Appl Catal A 214:219CrossRefGoogle Scholar
  25. 25.
    Feng YJ, Li DQ, Li CX, Wang ZH (2003) Acta Chim Sin 61:78Google Scholar
  26. 26.
    Wang H, Xiang X, Li F, Evans DG, Duan X (2009) Appl Surf Sci 255:6945CrossRefGoogle Scholar
  27. 27.
    Aramendía MA, Avilés Y, Benítez JA, Borau V, Jiménez C, Marinas JM, Ruiz JR, Urbano FJ (1999) Microporous Mesoporous Mater 29:319CrossRefGoogle Scholar
  28. 28.
    Carja G, Nakamura R, Aida T, Niiyama H (2001) Microporous Mesoporous Mater 47:275CrossRefGoogle Scholar
  29. 29.
    Kloprogge JT, Hickey L, Frost RL (2004) J Solid State Chem 177:4047CrossRefGoogle Scholar
  30. 30.
    Daza CE, Cabrera CR, Moreno S, Molina R (2010) Appl Catal A 378:125CrossRefGoogle Scholar
  31. 31.
    Liu S, Chen D, Zhang K, Li JJ, Zhao NQ (2008) Int J Hydrog Energy 33:3736CrossRefGoogle Scholar
  32. 32.
    Dussault L, Dupin JC, Guimon C, Monthioux M, Latorre N, Ubieto T, Romeo E, Royo C, Monzón A (2007) J Catal 251:223CrossRefGoogle Scholar
  33. 33.
    Kannan S, Dubey A, Knozinger H (2005) J Catal 231:381CrossRefGoogle Scholar
  34. 34.
    Ashok J, Subrahmanyam M, Venugopal A (2008) Int J Hydrog Energy 33:2704CrossRefGoogle Scholar
  35. 35.
    Carrero A, Calles JA, Vizcaíno AJ (2007) Appl Catal A 327:82CrossRefGoogle Scholar
  36. 36.
    Galetti AE, Gomez MF, Arrua LA, Marchi AJ, Abello MC (2008) Catal Commun 9:1201CrossRefGoogle Scholar
  37. 37.
    Damyanova S, Pawelec B, Arishtirova K, Fierro JLG, Sener C, Dogu T (2009) Appl Catal B 92:250CrossRefGoogle Scholar
  38. 38.
    Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS (2005) Appl Catal B 55:287CrossRefGoogle Scholar
  39. 39.
    Lenglet M, Hochu F, Durr J, Tuilier MH (1997) Solid State Commun 104:793CrossRefGoogle Scholar
  40. 40.
    Wang FG, Li Y, Cai WJ, Zhan ES, Mu XL, Shen WJ (2009) Catal Today 146:31CrossRefGoogle Scholar
  41. 41.
    Liu DP, Lau R, Borgna A, Yang YH (2009) Appl Catal A 358:110CrossRefGoogle Scholar
  42. 42.
    Wu C, Liu RH (2010) Int J Hydrog Energy 35:7386CrossRefGoogle Scholar
  43. 43.
    Chen HW, Wang CY, Yu CH, Tseng LT, Liao PH (2004) Catal Today 97:173CrossRefGoogle Scholar
  44. 44.
    Barros BS, Melo DMA, Libs S, Kiennemann A (2010) Appl Catal A 378:69CrossRefGoogle Scholar
  45. 45.
    Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH (2009) J Catal 266:380CrossRefGoogle Scholar
  46. 46.
    Zhang WD, Liu BS, Zhu C, Tian YL (2005) Appl Catal A 292:138CrossRefGoogle Scholar
  47. 47.
    Nishiyama Y, Tamai Y (1974) J Catal 33:98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSichuan UniversityChengduChina
  2. 2.Department of Material and Chemical EngineeringSichuan University of Science and EngineeringZigongChina

Personalised recommendations