Advertisement

Catalysis Letters

, Volume 141, Issue 7, pp 1037–1046 | Cite as

High-Stable Mesoporous Ni-Ce/Clay Catalysts for Syngas Production

  • Carlos Enrique Daza
  • Oscar A. Gamba
  • Yesid Hernández
  • Miguel A. Centeno
  • Fanor Mondragón
  • Sonia Moreno
  • Rafael Molina
Article

Abstract

A mesoporous-type catalytic support was synthesized through the modification of a smectite with polyvinyl alcohol (PVA) and microwaves. Texture and micro-morphology of the support was determined. Several techniques were employed in order to describe the chemical environment of active species on the surface. Ni0 particle sizes were dependent on the structural site of reducible species. High stable Ni-Ce catalysts (calcined at 800 °C) were evaluated in the CO2 reforming of methane reaction at 700 °C (WHSV = 96 L g−1 h−1, without dilution gas and pre-reduction). The catalysts have presented CH4 conversions between 40 and 65%, CO2 conversion between 35 and 65% and H2/CO ratios between 0.2 and 0.4.

Graphical Abstract

Delaminated-clay was synthesized from a natural smectite using polyvinyl alcohol and microwaves. Ni-Ce catalysts supported on delaminated clay achieved high stability in dry reforming of methane for syngas production.

Keywords

Delamination Clay mineral Syngas Reforming 

Notes

Acknowledgments

C.E. Daza thanks to COLCIENCIAS for his doctorate scholarship. W. Y. Hernandez thanks to ALBAN program for his doctorate scholarship. The authors thank to project No 201010011587 DIB Universidad Nacional de Colombia and Professor Carlos R. Cabrera at Puerto Rico University for XPS measurements.

References

  1. 1.
    Campos A, Gagea B, Moreno S, Jacobs P, Molina R (2008) Appl Catal A 345:112CrossRefGoogle Scholar
  2. 2.
    Carriazo JG, Centeno MA, Odriozola JA, Moreno S, Molina R (2007) Appl Catal A 317:120CrossRefGoogle Scholar
  3. 3.
    Carriazo JG, Martínez LM, Odriozola JA, Moreno S, Molina R, Centeno MA (2007) Appl Catal B 72:157CrossRefGoogle Scholar
  4. 4.
    Olaya A, Moreno S, Molina R (2009) Appl Catal A 370:7CrossRefGoogle Scholar
  5. 5.
    Sanabria NR, Ávila P, Yates M, Rasmussen SB, Molina R, Moreno S (2010) Appl Clay Sci 47:283CrossRefGoogle Scholar
  6. 6.
    Pérez A, Centeno MA, Odriozola JA, Molina R, Moreno S (2008) Catal Today 133–135:526CrossRefGoogle Scholar
  7. 7.
    Carriazo JG, Molina R, Moreno S (2008) Appl Catal A 334:168CrossRefGoogle Scholar
  8. 8.
    Sanabria NR, Centeno MA, Molina R, Moreno S (2009) Appl Catal A 356:243CrossRefGoogle Scholar
  9. 9.
    Alexandre M, Dubois P (2000) Mater Sci Eng Rep 28:1CrossRefGoogle Scholar
  10. 10.
    Vaccari A (1998) Catal Today 41:53CrossRefGoogle Scholar
  11. 11.
    Vaccari A (1999) Appl Clay Sci 14:161CrossRefGoogle Scholar
  12. 12.
    De Paiva LB, Morales AR, Valenzuela FR (2008) Appl Clay Sci 42:8CrossRefGoogle Scholar
  13. 13.
    Chmielarz L, Gil B, Kuśtrowski P, Piwowarska Z, Dudek B, Michalik M (2009) J Solid State Chem 182:1094CrossRefGoogle Scholar
  14. 14.
    Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119CrossRefGoogle Scholar
  15. 15.
    Yuan P, Annabi-Bergaya F, Tao Q, Fan M, Liu Z, Zhu J, He H, Chen T (2008) J Colloid Interface Sci 324:142CrossRefGoogle Scholar
  16. 16.
    Martínez MJ, Fetter G, Domínguez JM, Melo-Banda JA, Ramos-Gómez R (2003) Microporous Mesoporous Mater 58:73CrossRefGoogle Scholar
  17. 17.
    Sivakumar S, Damodaran AD, Warrier KGK (1995) Ceram Int 21:85CrossRefGoogle Scholar
  18. 18.
    Vicente I, Salagre P, Cesteros Y, Guirado F, Medina F, Sueiras J (2009) Appl Clay Sci 43:103CrossRefGoogle Scholar
  19. 19.
    Mei JG, Yu SM, Cheng J (2004) Catal Commun 58:437CrossRefGoogle Scholar
  20. 20.
    Alexandre M, Dubois P, Sun T, Garces JM, Jérôme R (2002) Polymer 43:2123CrossRefGoogle Scholar
  21. 21.
    Nikkhah SJ, Ramazani SA, Baniasadi H, Tavakolzadeh F (2009) Mater Des 30:2309CrossRefGoogle Scholar
  22. 22.
    Hao Z, Zhu HY, Lu GQ (2003) Appl Catal A 242:275CrossRefGoogle Scholar
  23. 23.
    Hwang KS, Zhu HY, Lu GQ (2001) Catal Today 68:183CrossRefGoogle Scholar
  24. 24.
    Daza C, Kiennemann A, Moreno S, Molina R (2009) Energy Fuels 23:3497CrossRefGoogle Scholar
  25. 25.
    Daza C, Kiennemann A, Moreno S, Molina R (2009) Appl Catal A 364:65CrossRefGoogle Scholar
  26. 26.
    Jankovic B, Adnadevic B, Mentus S (2008) Chem Eng Sci 63:567CrossRefGoogle Scholar
  27. 27.
    Daza C, Gallego J, Moreno JA, Mondragón F, Moreno S, Molina R (2008) Catal Today 133–135:357CrossRefGoogle Scholar
  28. 28.
    Gandia LM, Vicente MA, Gil A, Rodriguez F, Unger K (2002) Stud Surf Sci Catal 144:585CrossRefGoogle Scholar
  29. 29.
    Gil A, Vicente MA, Gandía LM (2000) Microporous Mesoporous Mater 34:115CrossRefGoogle Scholar
  30. 30.
    Yang Y, Li W, Xu H (2002) React Kinet Catal Lett 77:155CrossRefGoogle Scholar
  31. 31.
    Wang S, Zhu HY, Lu GQ (1998) J Colloid Interface Sci 204:128CrossRefGoogle Scholar
  32. 32.
    Rostrup-Nielsen JR (1993) Catal Today 18:305CrossRefGoogle Scholar
  33. 33.
    Kim D, Stöwe K, Müller F, Maier F (2007) J Catal 247:101CrossRefGoogle Scholar
  34. 34.
    Xu G, Shi K, Gao Y, Xu H, Wei Y (1999) J Mol Catal A 147:47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carlos Enrique Daza
    • 1
    • 4
  • Oscar A. Gamba
    • 1
  • Yesid Hernández
    • 2
  • Miguel A. Centeno
    • 2
  • Fanor Mondragón
    • 3
  • Sonia Moreno
    • 1
  • Rafael Molina
    • 1
  1. 1.Estado Sólido y Catálisis Ambiental. Departamento de Química, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Instituto de Ciencia de Materiales de SevillaCentro Mixto CSIC-Universidad de SevillaSevillaSpain
  3. 3.Química de Recursos Energéticos y Medio AmbienteUniversidad de AntioquiaMedellínColombia
  4. 4.Departamento de QuímicaPontificia Universidad JaverianaBogotáColombia

Personalised recommendations