Catalysis Letters

, Volume 141, Issue 7, pp 982–986 | Cite as

Influence of Cluster Size Distribution on Cluster Size Dependent Catalytic Kinetics

  • Dmitry Yu. Murzin
  • Irina L. Simakova


A theoretical analysis of the influence of particle size distribution on observed TOF dependence on cluster size is presented for a two step catalytic cycle. Such mechanism can display different TOF behavior including maxima. In the later case simulations demonstrated broadening of TOF curves compared to an idealized case of very narrow PSD. However, for more often observed cases with smooth TOF increase or decrease with cluster size increase incorporation of particle size distribution in kinetic analysis is not required at least for often experimentally observed particle size distributions.

Graphical Abstract


Cluster size Particle size distribution Decarboxylation Kinetics 



This work is part of the activities at the Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence Programme (2000–2011) by the Academy of Finland.


  1. 1.
    Schlögl R, Abd Hamid SB (2004) Angew Chem Int Ed 43:1628CrossRefGoogle Scholar
  2. 2.
    Narayanan R, El-Sayed MA (2008) Top Catal 47:15CrossRefGoogle Scholar
  3. 3.
    Henry CR (2000) Appl Surf Sci 164:252CrossRefGoogle Scholar
  4. 4.
    Klasovsky F, Claus P (2008) In: Corain B, Schmid G, Toshima N (eds) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam, p 167Google Scholar
  5. 5.
    van Santen RA (2009) Acc Chem Res 42:57CrossRefGoogle Scholar
  6. 6.
    Bell AT (2003) Science 299:1688CrossRefGoogle Scholar
  7. 7.
    Whitesides GM (2005) Small 1:172CrossRefGoogle Scholar
  8. 8.
    Pernicone N (2003) Cattech 7:196CrossRefGoogle Scholar
  9. 9.
    Somorjai GA, Park JY (2008) Angew Chemie Int Ed 47:9161CrossRefGoogle Scholar
  10. 10.
    Somorjai GA, Park JY (2008) Topics Catal 49:126CrossRefGoogle Scholar
  11. 11.
    Parmon VN (2007) Dokl Phys Chem 413:42CrossRefGoogle Scholar
  12. 12.
    Murzin DYu (2010) J Mol Catal A 315:226CrossRefGoogle Scholar
  13. 13.
    Murzin DYu (2009) Chem Eng Sci 64:1046CrossRefGoogle Scholar
  14. 14.
    Murzin DYu, Simakova IL (2010) Kinet Catal 51:828CrossRefGoogle Scholar
  15. 15.
    Murzin DYu, Parmon VN (2011) Quantification of cluster size effect (structure sensitivity) in heterogeneous catalysis. Catalysis-Special Periodical Reports RSC, vol 23. Royal Society of Chemistry, Cambridge, pp 179–203Google Scholar
  16. 16.
    Murzin DYu (2011) Nanokinetics for nanocatalysis. Catal Sci Technol. doi: 10.1039/C0CY00084A
  17. 17.
    Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DYu (2009) Appl Catal A 355:100CrossRefGoogle Scholar
  18. 18.
    Brønsted JN (1928) Chem Rev 5:231CrossRefGoogle Scholar
  19. 19.
    Temkin MI (1979) Adv Catal 28:173CrossRefGoogle Scholar
  20. 20.
    Murzin DYu (2010) J Catal 276:85CrossRefGoogle Scholar
  21. 21.
    Parker S, Campbell CT (2007) Phys Rev B 75:035430CrossRefGoogle Scholar
  22. 22.
    Campbell CT, Parker S, Starr DE (2002) Science 298:811CrossRefGoogle Scholar
  23. 23.
    Zhdanov VP, Kasemo B (2003) In: Wieckowski A, Savonova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker Inc, New York, pp 35–64Google Scholar
  24. 24.
    Montejano-Carrizales JM, Aguilera-Granja F, Moran-Lopez MI (1997) Nanostruct Mater 8:269CrossRefGoogle Scholar
  25. 25.
    Agostini G, Pellegrini R, Leofanti G, Bertinetti L, Bertarione S, Groppo E, Zecchina A, Lamberti C (2009) J Phys Chem C 113:10485CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Åbo Akademi UniversityTurku/ÅboFinland
  2. 2.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations