Catalysis Letters

, Volume 141, Issue 4, pp 518–524 | Cite as

Rippled and Helical MoS2 Nanowire Catalysts: An Aberration Corrected STEM Study

  • Francis Leonard Deepak
  • Rodrigo Esparza
  • Belsay Borges
  • Xóchitl López-Lozano
  • Miguel Jose-Yacaman


Aberration corrected (Cs) scanning transmission electron microscopy (STEM) has been used for the first time to characterize MoS2 catalysts (supported on Al2O3 substrates) to provide detailed information of its shape and structure. The high-resolution imaging reveals unprecedented morphologies present in the MoS2 catalyst that have never been observed before with other experimental techniques because of the insufficient image contrast and/or resolution. High angle annular dark field (HAADF)-STEM images shows very clearly that the catalyst is formed by elongated chains with a twisted and helical structure. Based on the HAADF-STEM images, we built three atomic models to illustrate the different morphologies found in the MoS2 catalyst. The existence of these nanostructures opens the posibility for novel catalyticaly active edge morphologies in MoS2-based nanocatalysts.

Graphical Abstract


MoS2 Hydrodesulphurization catalysts HAADF–STEM 



The authors would like to acknowledge the NSF PREM Grant # DMR 0934218; title: oxide and metal nanoparticles-the interface between life sciences and physical sciences.


  1. 1.
    U.S. Environmental Protection Agency ( European Union, EU Directive 98/70/EC (1998)
  2. 2.
    Angelici RJ (1994) In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, New York, p 1433Google Scholar
  3. 3.
    Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis: science and technology. Springer-Verlag, BerlinGoogle Scholar
  4. 4.
    Kabe T, Ishihara A, Qian W (1999) Hydrodesulfurization and hydrodenitrogenation:chemistry and engineering. Kondasa-Wiley-VCH, TokyoGoogle Scholar
  5. 5.
    Sanchez-Delgado RA (2002) Organometallic modeling of the hydrodesulfurization and hydrodenitrogenation reactions. Kluwer Academic Publishers, DordrechtGoogle Scholar
  6. 6.
    Angelici RJ (2001) Organometallics 20:1259CrossRefGoogle Scholar
  7. 7.
    Angelici RJ (1997) Polyhedron 16:3073CrossRefGoogle Scholar
  8. 8.
    Cheng F, Chen J, Gou X (2006) Adv Mater 18:2561CrossRefGoogle Scholar
  9. 9.
    Lauritsen JV, Kibsgaard J, Helveg S, Topsoe H, Clausen BS, Laegsgaard E, Besenbacher F (2007) Nat Nanotechnol 2:53CrossRefGoogle Scholar
  10. 10.
    Gemming S, Seifert G (2007) Nat Nanotechnol 2:21CrossRefGoogle Scholar
  11. 11.
    Tuxen A, Kibsgaard J, Gøbel H, Lægsgaard E, Topsøe H, Lauritsen JV, Besenbacher F (2010) ACS Nano 4:4677CrossRefGoogle Scholar
  12. 12.
    Lauritsen JV, Nyberg M, Nørskov JK, Clausen BS, Topsøe H, Lægsgaard E, Besenbacher F (2004) J Catal 224:94CrossRefGoogle Scholar
  13. 13.
    Lauritsen JV, Bollinger MV, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2004) J Catal 221:510CrossRefGoogle Scholar
  14. 14.
    Logadottir A, Moses PG, Hinnemann B, Topsøe Nan-Yu, Knudsen KG, Topsøe H, Nørskov JK (2006) Catal Today 111:44CrossRefGoogle Scholar
  15. 15.
    Lauritsen JV, Nyberg M, Vang RT, Bollinger MV, Clausen BS, Topsøe H, Jacobsen KW, Lægsgaard E, Nørskov JK, Besenbacher F (2003) Nanotechnology 14:385CrossRefGoogle Scholar
  16. 16.
    Botello-Mendez AR, Lopez-Urıas F, Terrones M, Terrones T (2009) Nanotechnology 20:325703CrossRefGoogle Scholar
  17. 17.
    Shidpour R, Manteghian M (2010) Nanoscale 2:1429CrossRefGoogle Scholar
  18. 18.
    Li Y, Zhou Z, Zhang S, Chen Z (2008) J Am Chem Soc 130:16739CrossRefGoogle Scholar
  19. 19.
    Ionescu A, Allouche A, Aycard J-P, Rajzmann M, Le Gall R (2003) J Phys Chem B 107:8490CrossRefGoogle Scholar
  20. 20.
    Berhault G, Mehta A, Pavel AC, Yang J, Rendon L, Jose-Yacaman M, Araiza LC, Moller AD, Chianelli RR (2001) J Catal 198:9CrossRefGoogle Scholar
  21. 21.
    Berhault G, De Perez, la Rosa M, Mehta A, Jose-Yacaman M, Chianelli RR (2008) Appl Catal 345:80CrossRefGoogle Scholar
  22. 22.
    De la Rosa MP, Texier S, Berhault G, Camacho A, Jose-Yacaman M, Mehta A, Fuentes S, Montoya JA, Murrieta F, Chianelli RR (2004) J Catal 225:288CrossRefGoogle Scholar
  23. 23.
    Nellist PD, Pennycook SJ (1996) Science 274:413CrossRefGoogle Scholar
  24. 24.
    Pennycook SJ (1989) Ultramicroscopy 30:58CrossRefGoogle Scholar
  25. 25.
    Van Benthem K, Pennycook SJ (2009) Appl Phys 96:161Google Scholar
  26. 26.
    Ortalan V, Uzun A, Gates BC, Browning ND (2010) Nat Nanotechnol 5:506CrossRefGoogle Scholar
  27. 27.
    Wang SW, Borisevich AY, Rashkeev SN, Glazoff MV, Sohlberg K, Pennycook SJ, Pantelides ST (2004) Nat Mater 3:143CrossRefGoogle Scholar
  28. 28.
    Shibata N, Findlay SD, Azuma S, Mizoguchi T, Yamamoto T, Ikuhara Y (2009) Nat Mater 8:654CrossRefGoogle Scholar
  29. 29.
    Nellist PD, Chisholm MF, Dellby M, Krivanek OL, Murfitt MF, Szilagyi ZS, Lupini AR, Borisevich A, Sides WH Jr, Pennycook SJ (2004) Science 305:1741CrossRefGoogle Scholar
  30. 30.
    Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Nature 464:571CrossRefGoogle Scholar
  31. 31.
    Muller DA (2009) Nat Mater 8:263CrossRefGoogle Scholar
  32. 32.
    Brorson M, Carlsson A, Topsoe H (2007) Catal Today 123:31CrossRefGoogle Scholar
  33. 33.
    Kisielowski C, Ramasse QM, Hansen LP, Brorson M, Carlsson A, Molenbrock AM, Topsoe H, Helveg S (2010) Angew Chem Int Ed 49:2708Google Scholar
  34. 34.
    Mayoral A, Mejía-Rosales S, Mariscal MM, Pérez-Tijerina E, José-Yacamán M (2010) Nanoscale 2:2647CrossRefGoogle Scholar
  35. 35.
    HREM Research Inc.,
  36. 36.
    Lia ZY, Yuan J, Chen Y, Palmer RE, Wilcoxon JP (2005) Appl Phys Lett 87:243103CrossRefGoogle Scholar
  37. 37.
    Ferrer D, Torres-Castro A, Gao X, Sepulveda-Guzman S, Ortiz-Mendez U, Jose-Yacaman M (2007) Nano Lett 7:1701CrossRefGoogle Scholar
  38. 38.
    Ferrer D, Blom DA, Allard LF, Mejia S, Perez-Tijerina E, Jose-Yacaman M (2008) J Mater Chem 18:2442CrossRefGoogle Scholar
  39. 39.
    Iglic A, Tzaphlidou M, Remskar M, Babnik B, Daniel M, Kralj-Iglic V (2005) Fullerenes Nanotubes Carbon Nanostruct 13:183CrossRefGoogle Scholar
  40. 40.
    Kralj-Iglic V, Remskar M, Iglic A (2004) In: Reimer A (ed) Horizons in world physics, vol 244. Nova Science Publishers Inc, New York, pp 111–156Google Scholar
  41. 41.
    Tianshu L, Galli G (2007) J Phys Chem C 111:16192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francis Leonard Deepak
    • 1
    • 2
  • Rodrigo Esparza
    • 1
  • Belsay Borges
    • 1
    • 3
  • Xóchitl López-Lozano
    • 1
  • Miguel Jose-Yacaman
    • 1
  1. 1.Department of Physics and AstronomyUniversity of Texas at San Antonio, One UTSA CircleSan AntonioUSA
  2. 2.International Iberian Nanotechnology LaboratoryBragaPortugal
  3. 3.Departamento de QuímicaUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations