Catalysis Letters

, Volume 141, Issue 4, pp 554–564 | Cite as

On the Effect of Hydrocarbon/Oxygen Ratios During the Dehydrogenation of n-Octane Over a VMgO Catalyst



A vanadium–magnesium oxide catalyst (VMgO) with a V2O5 concentration of 15% by weight was employed for the oxidative dehydrogenation of n-octane to produce the corresponding linear octenes and C8 aromatics. The catalyst was synthesized by the wet impregnation method, and was characterized by in situ XRD, TGA-DSC, and 51V MAS NMR. The used catalysts were characterized by powder XRD, BET, pore volume analysis, SEM, EDX, ICP-OES, and 15V MAS NMR. The catalytic testing was carried out at different n-octane/O2 molar ratios (viz. 0.1, 0.4, 0.8, 1.2, and 1.6) at a GHSV of 8,000 h−1 in a continuous flow fixed bed reactor. The results showed that the catalytic performance with regard to both activity and selectivity was very sensitive to the strength of the oxidative environment (n-octane to oxygen ratio). No phasic changes were observed in the used catalysts. However, some textural changes were induced by the catalytic testing.

Graphical Abstract


VMgO Oxidative dehydrogenation n-Octane 



The authors gratefully acknowledge the financial support from the NRF and THRIP. We also thank the University of KwaZulu-Natal (South Africa) for a postdoctoral fellowship (EAE).


  1. 1.
    Sharan KM (1984) Catal Rev Sci Eng 26:141CrossRefGoogle Scholar
  2. 2.
    Fung J, Wang I (1991) J Catal 130:577CrossRefGoogle Scholar
  3. 3.
    Meriaudeau P, Naccache C (1997) Catal Rev Sci Eng 39:5CrossRefGoogle Scholar
  4. 4.
    Panuccio GJ, Schmidt LD (2006) Appl Catal A Gen 313:63CrossRefGoogle Scholar
  5. 5.
    Pillay B, Mathebula MR, Friedrich HB (2009) Appl Catal A Gen 361:57CrossRefGoogle Scholar
  6. 6.
    Davis BH (1976) J Catal 42:376CrossRefGoogle Scholar
  7. 7.
    Sivasanker S, Padalkar SR (1988) Appl Catal 39:123CrossRefGoogle Scholar
  8. 8.
    Hoang DL, Preiss H, Parlitz B, Krumeich F, Lieske H (1999) Appl Catal A Gen 182:385CrossRefGoogle Scholar
  9. 9.
    Trunschke A, Hoang DL, Radnik J, Brzezinka K-W, Brückner A, Lieske H (2001) Appl Catal A Gen 208:381CrossRefGoogle Scholar
  10. 10.
    Jongpatiwut S, Sackamduang P, Rirksomboon T, Osuwan S, Resasco DE (2003) J Catal 218:1CrossRefGoogle Scholar
  11. 11.
    Szechenyi A, Solymosi F (2006) Appl Catal A Gen 306:149CrossRefGoogle Scholar
  12. 12.
    Schmidt LD, Huff M, Bharadwaj SS (1994) Chem Eng Sci 49:3981CrossRefGoogle Scholar
  13. 13.
    Mamedov EA, Cortes Corberan V (1995) Appl Catal A Gen 127:1CrossRefGoogle Scholar
  14. 14.
    Bhasin MM, McCain JH, Vora BV, Imai T, Pujado PR (2001) Appl Catal A Gen 221:397CrossRefGoogle Scholar
  15. 15.
    Lange J-P, Schoonebeek RJ, Mercera PDL, van Breukelen FW (2005) Appl Catal A Gen 283:243CrossRefGoogle Scholar
  16. 16.
    Yanhui W, Diyong W (2001) Int J Hydrog Energy 26:795CrossRefGoogle Scholar
  17. 17.
    Zhang J, Wang Y, Ma R, Wu D (2003) Appl Catal A Gen 243:251CrossRefGoogle Scholar
  18. 18.
    Williams KA, Schmidt LD (2006) Appl Catal A Gen 299:30CrossRefGoogle Scholar
  19. 19.
    Panuccio GJ, Williams KA, Schmidt LD (2006) Chem Eng Sci 61:4207CrossRefGoogle Scholar
  20. 20.
    Panuccio GJ, Schmidt LD (2007) Appl Catal A Gen 332:171CrossRefGoogle Scholar
  21. 21.
    Friedrich HB, Mahomed AS (2008) Appl Catal A Gen 347:11CrossRefGoogle Scholar
  22. 22.
    Chaar MA, Patel D, Kung MC, Kung HH (1987) J Catal 105:483CrossRefGoogle Scholar
  23. 23.
    Chaar MA, Patel D, Kung HH (1988) J Catal 109:463CrossRefGoogle Scholar
  24. 24.
    Kung HH, Michalakos PM (1993) Catalytic selective oxidation. In: Oyama ST (ed) ACS symposium series. Hattingh L, Washington, p 389Google Scholar
  25. 25.
    Corma A, Lopez Nieto JM, Paredes N (1993) J Catal 144:425CrossRefGoogle Scholar
  26. 26.
    Blasco T, Lopez Nieto JM, Dejoz A, Vazquez MI (1995) J Catal 157:271CrossRefGoogle Scholar
  27. 27.
    Kung HH, Kung MC (1997) Appl Catal A Gen 157:105CrossRefGoogle Scholar
  28. 28.
    Blasco T, Lopez Nieto JM (1997) Appl Catal A Gen 157:117CrossRefGoogle Scholar
  29. 29.
    Dejoz A, Lopez Nieto JM, Marquez F, Vazquez MI (1999) Appl Catal A Gen 180:83CrossRefGoogle Scholar
  30. 30.
    Siew Hew Sam D, Soenen V, Volta JC (1990) J Catal 123:417CrossRefGoogle Scholar
  31. 31.
    Corma A, Lopez Nieto JM, Paredes N (1993) Appl Catal A Gen 104:161CrossRefGoogle Scholar
  32. 32.
    Elkhalifa EA, Friedrich HB (2010) Appl Catal A Gen 373:122CrossRefGoogle Scholar
  33. 33.
    Burch R, Crabb EM (1993) Appl Catal A Gen 100:111CrossRefGoogle Scholar
  34. 34.
    Oganowski W, Hanuza J, Kepinski L, Mista W, Maczka M, Wyrostek A, Bukowski Z (1998) J Mol Catal A Chem 136:91CrossRefGoogle Scholar
  35. 35.
    Holgado MJ, San Roman S, Malet P, Rives V (2005) Mater Chem Phys 89:49CrossRefGoogle Scholar
  36. 36.
    Lapina OB, Simakov AV, Mastikhim VM, Veniaminov SA, Shubin AA (1989) J Mol Catal 50:55CrossRefGoogle Scholar
  37. 37.
    Hayakawa S, Yoko T, Sakka S (1993) Bull Chem Soc Jpn 66:3393CrossRefGoogle Scholar
  38. 38.
    Blasco T, Lopez Nieto JM (1996) Colloids Surf A Physicochem Eng Asp 115:187CrossRefGoogle Scholar
  39. 39.
    Lapina OB, Mastikhin VM, Siminova LG, Bulgakova YO (1991) J Mol Catal 69:61CrossRefGoogle Scholar
  40. 40.
    Hodnett BK (2000) Heterogeneous catalysis oxidation: fundamental and technological aspects of the selective and total oxidation of organic compounds. Wiley, New York, p 20Google Scholar
  41. 41.
    Lemonidou AA, Tjatjopoulos GJ, Vasalos IA (1998) Catal Today 45:65CrossRefGoogle Scholar
  42. 42.
    Meriaudeau P, Thangaraj A, Naccache C, Narayanan S (1994) J Catal 146:579CrossRefGoogle Scholar
  43. 43.
    Shi B, Davis BH (1995) J Catal 157:626CrossRefGoogle Scholar
  44. 44.
    Michalakos PM, Kung MC, Jahan I, Kung HH (1993) J Catal 140:226CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of ChemistryUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations