Advertisement

Catalysis Letters

, Volume 139, Issue 1–2, pp 26–32 | Cite as

Synthesis of High Surface Area ZnO(0001) Plates as Novel Oxide Supports for Heterogeneous Catalysts

  • Patrick D. Burton
  • Eric J. Peterson
  • Timothy J. Boyle
  • Abhaya K. Datye
Article

Abstract

We demonstrate a technique to prepare high surface area ZnO powders that preferentially favor a plate-like morphology, exposing the \((0001)/(000\bar{1})\) facets. A solution-based synthetic route was used to decompose zinc acetate in the presence of amine and citrate ions to block the \((0001)/(000\bar{1})\) facets and favor growth from the pyramid planes. The ZnO platelets remained stable upon heating to 250 °C as evidenced by electron diffraction patterns. The high surface area (75 m2/g) and surface energetics of the (0001) plane make these powders suitable as supports for heterogeneous catalysts.

Graphical Abstract

Keywords

ZnO(0001) High surface area ZnO Controlled morphology oxide support 

Notes

Acknowledgements

This work has been supported by the United States Department of Energy Office of Basic Energy Science, Division of Chemical Sciences under contract number DE-FG02-05ER15712 (University of New Mexico), and DE-AC0494AL85000 (Sandia National Laboratories), Division of Material Science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy.

References

  1. 1.
    Vesborg PCK, Chorkendorff I, Knudsen I, Balmes O, Nerlov J, Molenbroek AM, Clausen BS, Helveg S (2009) J Catal 262(1):65. doi: 10.1016/j.jcat.2008.11.028 CrossRefGoogle Scholar
  2. 2.
    Iwasa N, Takezawa N (2003). Top Catal V22(3):215. doi: 10.1023/A:1023571819211 CrossRefGoogle Scholar
  3. 3.
    Karim AM, Conant T, Datye AK (2008) Phys Chem Chem Phys 10:5584. doi: 10.1039/b800009c CrossRefGoogle Scholar
  4. 4.
    Cheng WH, Akhter S, Kung HH (1983) J Catal 82(2):341. doi: 10.1016/0021-9517(83)90200-2 CrossRefGoogle Scholar
  5. 5.
    Wilmer H, Kurtz M, Klementiev KV, Tkachenko OP, Grünert W, Hinrichsen O, Birkner A, Rabe S, Merz K, Driess M, Wöll C, Muhler M (2003) Phys Chem Chem Phys 5:4736. doi: 10.1039/b304425d CrossRefGoogle Scholar
  6. 6.
    Vohs J, Barteau M (1986) Surf Sci 176(1–2):91. doi: 10.1016/0039-6028(86)90165-2 CrossRefGoogle Scholar
  7. 7.
    Hyman MP, Lebarbier VM, Wang Y, Datye AK, Vohs JM (2009) J Phys Chem C 113(17):7251. doi: 10.1021/jp809934f CrossRefGoogle Scholar
  8. 8.
    Bowker M, Houghton H, Waugh KC (1981) J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 77:3023. doi: 10.1039/F19817703023 Google Scholar
  9. 9.
    Halevi B, Vohs JM (2005) J Phys Chem B 109(50):23976CrossRefGoogle Scholar
  10. 10.
    Diebold U, Koplitz LV, Dulub O (2004) Appl Surf Sci 237(1–4):336Google Scholar
  11. 11.
    Dulub O, Boatner LA, Diebold U (2002) Surf Sci 519(3):201CrossRefGoogle Scholar
  12. 12.
    Ada K, Gökgöz M, Önal M, Sarıkaya Y (2008) Powder Technol 181(3):285. doi: 10.1016/j.powtec.2007.05.015 CrossRefGoogle Scholar
  13. 13.
    Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY (2008) J Phys Chem C 112(31):11859. doi: 10.1021/jp8038626 CrossRefGoogle Scholar
  14. 14.
    Xu CX, Sun XW, Dong ZL, Yu MB (2004) Appl Phys Lett 85(17):3878. doi: 10.1063/1.1811380 CrossRefGoogle Scholar
  15. 15.
    Wang F, Liu R, Pan A, Cao L, Cheng K, Xue B, Wang G, Meng Q, Li J, Li Q, Wang Y, Wang T, Zou B (2007) Mater Lett 61(10):2000. doi: 10.1016/j.matlet.2006.08.007 CrossRefGoogle Scholar
  16. 16.
    Staemmler V, Fink K, Meyer B, Marx D, Kunat M, Girol SG, Burghaus U, Wöll C (2003) Phys Rev Lett 90(10):106102/1CrossRefGoogle Scholar
  17. 17.
    Yu Q, Yu C, Yang H, Fu W, Chang L, Xu J, Wei R, Li H, Zhu H, Li M, Zou G, Wang G, Shao C, Liu Y (2007) Inorg Chem 46(15):6204. doi: 10.1021/ic070008a CrossRefGoogle Scholar
  18. 18.
    Wang M, Hahn SH, Kim JS, Chung JS, Kim EJ, Koo KK (2008) J Cryst Growth 310(6):1213. doi: 10.1016/j.jcrysgro.2008.01.001 CrossRefGoogle Scholar
  19. 19.
    Tian ZR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Nat Mater 2(12):821. doi: 10.1038/nmat1014 CrossRefGoogle Scholar
  20. 20.
    Rietveld HM (1969) J Appl Crystallogr 2(2):65. doi: 10.1107/S0021889869006558 CrossRefGoogle Scholar
  21. 21.
    Larson AC, Dreele RBV (2004) General structure analysis system (GSAS). Technical report, Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  22. 22.
    Toby BH (2001) J Appl Crystallogr 34(2):210 doi: 10.1107/S0021889801002242 CrossRefGoogle Scholar
  23. 23.
    Downs RT, Hall-Wallace M (2003) . Am Mineral 88:247Google Scholar
  24. 24.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60(2):309CrossRefGoogle Scholar
  25. 25.
    Cho S, Jang JW, Jung SH, Lee BR, Oh E, Lee KH (2009) Langmuir 25(6):3825. doi: 10.1021/la804009g CrossRefGoogle Scholar
  26. 26.
    Chippindale AM, Hibble SJ, Bilbé EJ (2009) Acta Crystallogr Sect C 65(7):i39. doi: 10.1107/S0108270109020885. http://dx.doi.org/10.1107/S0108270109020885
  27. 27.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Biophotonics Int 11(7):36Google Scholar
  28. 28.
    Cao X, Zeng H, Wang M, Xu X, Fang M, Ji S, Zhang L (2008) J Phys Chem C 112(14):5267. doi: 10.1021/jp800499r CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Patrick D. Burton
    • 1
  • Eric J. Peterson
    • 1
  • Timothy J. Boyle
    • 2
  • Abhaya K. Datye
    • 1
  1. 1.Department of Chemical and Nuclear Engineering, Center for Micro-Engineered MaterialsUniversity of New MexicoAlbuquerqueUSA
  2. 2.Advanced Materials LaboratorySandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations