Catalysis Letters

, Volume 136, Issue 1–2, pp 9–13 | Cite as

Synthesis of Higher Alcohols from Syngas over Fe/K/β-Mo2C Catalyst

  • Ning Wang
  • Kegong Fang
  • Minggui Lin
  • Dong Jiang
  • Debao Li
  • Yuhan Sun


Fe/K/β-Mo2C catalysts were prepared by the temperature-programmed-reaction (TPRe) method and tested for higher alcohols synthesis (HAS). The catalysts exhibited high catalytic activity and selectivity to higher alcohols (C2 +OH). The effect of Fe/Mo molar ratio on the catalytic performance of HAS was investigated and the best one was at Fe/Mo molar ratio of 1/14. It could be concluded that the Fe promoter exerted strong promotion for carbon chain growth, especially for the stage of C1OH to C2OH. The “Fe3Mo3C” and “Fe3C” phases formed over Fe promoted K/β-Mo2C catalysts, which might be responsible for the high activity of higher alcohols and hydrocarbons synthesis, respectively.

Graphical Abstract

The typical change in CO conversion and selectivity of alcohols with time on stream over Fe/K/β-Mo2C (Fe/Mo=1/14) catalyst is shown in Figure. After about 72 h, a pseudo steady state was obtained. During the experimental period (192 h), the catalyst showed a constant activity and selectivity.


Fe/K/β-Mo2C catalyst Higher alcohols synthesis Syngas 



The authors gratefully acknowledge the financial support from National Natural Science Foundation of China under key Project No. 20590363 and Shell on Higher Alcohols Synthesis Package.


  1. 1.
    Herman RG (2000) Catal Today 55:233CrossRefGoogle Scholar
  2. 2.
    Hedrick SA, Chuang SSC, Pant A, Dastidar AG (2000) Catal Today 55:247CrossRefGoogle Scholar
  3. 3.
    Oyama ST (1992) Catal Today 15:179CrossRefGoogle Scholar
  4. 4.
    Patricia MP, Das TK, Davis BH (2003) Appl Catal 251:449CrossRefGoogle Scholar
  5. 5.
    Anne GC, Giraudon JM, Leclercq G, Leclercq L (2004) Appl Catal A 260:35CrossRefGoogle Scholar
  6. 6.
    Leclercq L, Almazouari A, Dufour M, Leclercq G (1996) In: Oyama ST (ed) The chemistry of transition metal carbides and nitrides. Blackie, Glasgow, p 345Google Scholar
  7. 7.
    Woo HC, Park KY, Kim YG, Nam I, Chung JS, Lee JS (1991) Appl Catal 75:267CrossRefGoogle Scholar
  8. 8.
    Boz I (2003) Catal Lett 87:187CrossRefGoogle Scholar
  9. 9.
    Xu R, Yang C, Wei W, Li WH, Sun YH, Hu TD (2004) J Mol Catal A Chem 221:51CrossRefGoogle Scholar
  10. 10.
    Xiang ML, Li DB, Xiao HC, Zhang JL, Li WH, Zhong B, Sun YH (2008) Catal Today 131:489CrossRefGoogle Scholar
  11. 11.
    Xiang ML, Li DB, Li WH, Zhong B, Sun YH (2007) Catal Commun 8:88CrossRefGoogle Scholar
  12. 12.
    Lee JS, Oyama ST, Boudart MJ (1987) J Catal 106:125CrossRefGoogle Scholar
  13. 13.
    Xiang ML, Li DB, Qi HJ, Li WH, Zhong B, Sun YH (2007) Fuel 86:1298CrossRefGoogle Scholar
  14. 14.
    Oshikawa K, Nagai M (2001) S Omi J Phys Chem B 105:9124CrossRefGoogle Scholar
  15. 15.
    Arabczyk W, Konicki W, Narkiewicz U, Jasinska I, Kałucki K (2004) Appl Catal A Gen 266:135CrossRefGoogle Scholar
  16. 16.
    Puello-Polo E, Brito JL (2008) J Mol Catal A Chem 281:85CrossRefGoogle Scholar
  17. 17.
    Hofer LJE, Peebles WC (1947) J Am Chem Soc 69:249CrossRefGoogle Scholar
  18. 18.
    Kuivila CS, Butt JB, Stair PC (1988) Appl Surf Sci 32:99CrossRefGoogle Scholar
  19. 19.
    Dwyer DJ, Hardenbergh JH (1984) J Catal 87:66CrossRefGoogle Scholar
  20. 20.
    Ding MY, Yang Y, Xu J, Tao ZC, Wang HL, Wang H, Xiang HW, Li YW (2008) Appl Catal A Gel 345:176CrossRefGoogle Scholar
  21. 21.
    Bao J, Fu YL, Sun ZH, Gao C (2003) Chem Commun 6:746CrossRefGoogle Scholar
  22. 22.
    Constant AG, Giraudon JM, Leclercq G, Leclercq L (2004) Appl Catal A Gen 260:35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Conversion, Shanxi Institute of Coal ChemistryChinese Academy of SciencesTaiyuanPeople’s Republic of China
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations