Advertisement

Catalysis Letters

, Volume 137, Issue 1–2, pp 55–62 | Cite as

Direct Green Iodination of Phenol over Solid Acids

  • Paolo Carniti
  • Stefano Colonna
  • Antonella Gervasini
Article

Abstract

Examination of several solid acid catalysts of different nature (acid resins, zeolites, mixed oxides, Nb-oxide, and Nb-phosphate) was performed for the direct iodination reaction of phenol by using molecular iodine. The experiments were carried out in mild and green conditions (50 °C at ambient pressure) in methanol in the presence of H2O2 as oxidant agent. Iodine was introduced in reduced amount, stoichiometric for the formation of di-iodinated phenol, to obtain information on the regio-selectivity of the iodination reaction. The catalysts proved to be all efficient for the introduction of iodine into the aromatic substrate, yielding mono-, di-, and tri-iodo derivates. Different selectivity distributions to the iodo-compound formed were observed over the different catalysts. Catalysts could be grouped into distinct families on the basis of their ortho/para orientation.

Graphical Abstract

Several solid acid catalysts of different nature were examined for the iodination reaction of phenol by molecular iodine in the presence of H2O2 as oxidant agent. All the catalysts were efficient for the introduction of iodine in the substrate yielding mono-, di-, and tri-iodo derivates. Different selectivity distributions to the ortho- and para-orientation were observed over the different catalysts.

Keywords

Phenol Iodination Solid acids 

Notes

Acknowledgment

BRACCO Imaging S.p.A. (Italy) is gratefully acknowledged for the financial contribution.

References

  1. 1.
    Merkushev EB (1988) Synthesis 12:923CrossRefGoogle Scholar
  2. 2.
    Lulinski P, Kryska A, Sosnowski M, Skulski L (2004) Synthesis 441Google Scholar
  3. 3.
    Kraszkiewicz L, Sosnowski M, Skulski L (2004) Tetrahedron 66:9113CrossRefGoogle Scholar
  4. 4.
    Olah GA, Wang Q, Sandford G, Prakash GKS (1993) J Org Chem 58:3194CrossRefGoogle Scholar
  5. 5.
    Iskra J, Stavber S, Zupan M (2004) Synthesis 11:1869CrossRefGoogle Scholar
  6. 6.
    Ahmed S, Razaq S (1976) Tetrahedron 32:503CrossRefGoogle Scholar
  7. 7.
    Suzuki H (1970) Bull Chem Soc Jpn 43:481CrossRefGoogle Scholar
  8. 8.
    Patil BR, Bhusare SR, Pawar RP, Vibhute YB (2005) Tetrahedron Lett 46:7179CrossRefGoogle Scholar
  9. 9.
    Castanet AS, Colobert F, Broutin PE (2002) Tetrahedron Lett 43:5047CrossRefGoogle Scholar
  10. 10.
    March J (2000) Advanced organic chemistry, 4th edn. Wiley-Interscience, New YorkGoogle Scholar
  11. 11.
    Baird WC Jr, Surridge JH (1970) J Org Chem 35:3436CrossRefGoogle Scholar
  12. 12.
    Firouzabadi H, Iranpoor N, Shiri M (2003) Tetrahedron Lett 44:8781CrossRefGoogle Scholar
  13. 13.
    Bachki A, Foabelo F, Yus M (1994) Tetrahedron 50:5139CrossRefGoogle Scholar
  14. 14.
    Krassowska-Swiebocka B, Lulinski P, Skulski L (1995) Synthesis 926Google Scholar
  15. 15.
    Sy WW (1993) Tetrahedron Lett 34:6223CrossRefGoogle Scholar
  16. 16.
    Orito K, Hatakeyama T, Takeo M, Suginome H (1995) Synthesis 1273Google Scholar
  17. 17.
    Ogata Y, Aoki K (1968) J Am Chem Soc 90:6187CrossRefGoogle Scholar
  18. 18.
    Lulinski P, Skulski L (2000) Bull Chem Soc Jpn 72:115CrossRefGoogle Scholar
  19. 19.
    Lulinski P, Skulski L (2000) Bull Chem Soc Jpn 73:951CrossRefGoogle Scholar
  20. 20.
    Johnsson R, Meijer A, Ellervik U (2005) Tetrahedron 61:11657CrossRefGoogle Scholar
  21. 21.
    Kajigaeshi S, Kakinami T, Watanabe F, Okamoto T (1989) Bull Chem Jpn 62:1349CrossRefGoogle Scholar
  22. 22.
    Zupan M, Iskra J, Stavber S (1997) Tetrahedron Lett 38:6305CrossRefGoogle Scholar
  23. 23.
    Jereb M, Stavber S, Zupan M (2003) Synthesis 853Google Scholar
  24. 24.
    Hubig SM, Jung W, Kochi JK (1994) J Org Chem 59:6233CrossRefGoogle Scholar
  25. 25.
    Carreno MC, Ruano JLG, Sanz G, Toledo MA, Urbano A (1996) Tetrahedron Lett 37:4081CrossRefGoogle Scholar
  26. 26.
    Edgar KJ, Falling SN (1990) J Org Chem 55:5287CrossRefGoogle Scholar
  27. 27.
    Espuna G, Arsequell G, Valencia G, Barluenga G, Pérez M, González JM (2000) Chem Commun 1307Google Scholar
  28. 28.
    Adimurthy S, Ramachandraiah G, Ghosh PK, Bedekar AV (2003) Tetrahedron Lett 44:5099CrossRefGoogle Scholar
  29. 29.
    Stavber S, Jereb M, Zupan M (2008) Synthesis 1487Google Scholar
  30. 30.
    Pavlinac J, Zupan M, Stavber S (2007) Org Biomol Chem 5:699CrossRefGoogle Scholar
  31. 31.
    Kiran YB, Konakahara T, Sakai N (2008) Synthesis 2327Google Scholar
  32. 32.
    Branytska OL, Neumann R (2003) J Org Chem 68:9510CrossRefGoogle Scholar
  33. 33.
    Wan S, Wang SR, Lu W (2006) J Org Chem 71:4349CrossRefGoogle Scholar
  34. 34.
    Iskra J, Stavber S, Zupan M (2008) Tetrahedron Lett 49:893CrossRefGoogle Scholar
  35. 35.
    Das B, Krishnaiah K, Venkateswarlu K, Reddy VS (2007) Tetrahedron Lett 48:81CrossRefGoogle Scholar
  36. 36.
    Stavber G, Iskra J, Zupan M, Stavber S (2008) Adv Synth Catal 350:2921CrossRefGoogle Scholar
  37. 37.
    Stavber G, Iskra J, Zupan M, Stavber S (2009) Green Chem 11:1262CrossRefGoogle Scholar
  38. 38.
    Pavlinac J, Zupan M, Stavber S (2006) Synthesis 2603Google Scholar
  39. 39.
    Pavlinac J, Zupan M, Stavber S (2006) J Org Chem 71:1027CrossRefGoogle Scholar
  40. 40.
    Jereb M, Zupan M, Stavber S (2004) Chem Commun 2614Google Scholar
  41. 41.
    Misono M, Okuhara T (1993) CHEMTECH November 23Google Scholar
  42. 42.
    Sartori G, Maggi R (2006) Chem Rev 106:1077CrossRefGoogle Scholar
  43. 43.
    Corma A (1995) Chem Rev 95:559CrossRefGoogle Scholar
  44. 44.
    Corma A, García h (2003) Chem Rev 103:4307CrossRefGoogle Scholar
  45. 45.
    Sheldon RA (2008) Chem Commun 3325Google Scholar
  46. 46.
    Khadilkar BM, Tilve RD, Varughese MA (2002) Tetrahedron Lett 43:9457CrossRefGoogle Scholar
  47. 47.
    Alexander VM, Khandekar AC, Samant SD (2003) Synlett 12:1895Google Scholar
  48. 48.
    Auroux A, Gervasini A, Guimon C (1999) J Phys Chem B 103:7195CrossRefGoogle Scholar
  49. 49.
    Beltrame P, Beltrame PL, Carniti P, Forni L, Zuretti G (1985) Zeolites 5:400CrossRefGoogle Scholar
  50. 50.
    Carniti P, Gervasini A, Biella S (2005) Ads Sci Technol 23:739CrossRefGoogle Scholar
  51. 51.
    Carniti P, Gervasini A, Biella S, Auroux A (2005) Chem Mater 17:6128CrossRefGoogle Scholar
  52. 52.
    Carniti P, Gervasini A, Marzo M (2008) J Phys Chem C 112:14064CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paolo Carniti
    • 1
  • Stefano Colonna
    • 2
  • Antonella Gervasini
    • 1
  1. 1.Dipartimento di Chimica Fisica ed ElettrochimicaUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Scienze Molecolari Applicate ai BiosistemiUniversità degli Studi di MilanoMilanItaly

Personalised recommendations