Catalysis Letters

, 131:618 | Cite as

The Catalytic Baeyer–Villiger Oxidation of Cyclohexanone to ε-Caprolactone over Stibium-containing Hydrotalcite

  • Chunxia Chen
  • Jinsong Peng
  • Bin Li
  • Lili Wang


A series of hydrotalcite-like compounds were prepared under microwave irradiation, which were used to catalyze the Baeyer–Villiger oxidation of cyclohexanone to ε-caprolactone with hydrogen peroxide as oxidant. The results show that stibium-containing hydrotalcite (Sb-HTL) has good catalytic properties in the reaction. In the Baeyer–Villiger oxidation of cyclohexanone to ε-caprolactone with H2O2 catalyzed by Sb-HTL, the effects of reaction time, reaction temperature, amount of catalyst and H2O2/cyclohexanone molar ratio are also investigated in details. It is shown the cyclohexanone conversion and ε-caprolactone selectivity can reach 79.15 and 93.84%, respectively, under the optimum reaction conditions. Furthermore, Sb-HTL can be reused for six times without obvious loss of activity and selectivity. Therefore, Sb-HTL is reusable and would be a promising catalyst for the Baeyer–Villiger oxidation using green and cheap oxidants like hydrogen peroxide instead of peroxycarboxylic acids.


Stibium-containing hydrotalcite Microwave irradiation Hydrogen peroxide Baeyer–Villiger oxidation Cyclohexanone 



The investigation was supported by Grant-in-Aid for Young Teachers from Northeast Forestry University (NO. 090-602052), and also supported by Grant-in-Aid for Young Scientists from Harbin Science and Technology Bureau (NO. 2008RFQXG012).


  1. 1.
    Baeyer A, Villiger V (1899) Ber Dtsch Che Ges 32:3625CrossRefGoogle Scholar
  2. 2.
    Strukul G (1998) Angew Chem Int E Engl 37:1198CrossRefGoogle Scholar
  3. 3.
    Ten Brink GJ, Arends IWCE, Sheldon RA (2004) Chem Rev 104:4105CrossRefGoogle Scholar
  4. 4.
    Jiménez-Sanchidrián C, Ruiz JR (2008) Tetrahedron 64:2011CrossRefGoogle Scholar
  5. 5.
    Bhaumik A, Kumar P, Kumar R (1996) Catal Lett 40:47CrossRefGoogle Scholar
  6. 6.
    Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 412:423CrossRefGoogle Scholar
  7. 7.
    Renz M, Blasco T, Corma A, Fomés V, Jensen R, Nemeth L (2002) Chem Eur J 8:4708CrossRefGoogle Scholar
  8. 8.
    Corma A, Navarro MT, Nemeth L, Renz M (2001) Chem Commun 21:2190CrossRefGoogle Scholar
  9. 9.
    Palazzi C, Pinna F, Strukul G (2000) J Mol Catal A Chem 151:245CrossRefGoogle Scholar
  10. 10.
    Bernini R, Mincione E, Cortese M, Saladino R, Gualandi G, Belfiore MC (2003) Tetrahedron Lett 44:4823CrossRefGoogle Scholar
  11. 11.
    Fischer J, Hölderich WF (1999) Appl Catal A Gen 180:435CrossRefGoogle Scholar
  12. 12.
    Davies LJ, McMorn P, Bethell D, Page PCB, King F, Hancok FE, Hutchings GJ (2001) J Mol Catal A Chem 165:243CrossRefGoogle Scholar
  13. 13.
    Corma A, Navarro MT, Renz M (2003) J Catal 219:242CrossRefGoogle Scholar
  14. 14.
    Nekoksova I, Zilkova N, Cejka (2005) J Stud Surf Sci Catal 158:1589CrossRefGoogle Scholar
  15. 15.
    Lei Z, Zhang Q, Wang R, Ma G, Jian C (2006) J Organomet Chem 691:5767CrossRefGoogle Scholar
  16. 16.
    Lei Z, Ma G, Jian C (2007) Catal Commun 8:305CrossRefGoogle Scholar
  17. 17.
    Sels BF, De Vos DE, Jacobs PA (2001) Catal Rev 43:443CrossRefGoogle Scholar
  18. 18.
    Pillai UR, Sahle-Demessie E (2003) J Mol Catal A Chem 191:93CrossRefGoogle Scholar
  19. 19.
    Jiménez-Sanchidrian C, Hidalgo JM, Llamas R, Ruiz JR (2006) Appl Catal A Gen 312:86CrossRefGoogle Scholar
  20. 20.
    Ruiz JR, Jiménez-Sanchidrian C, Llamas R (2006) Tetrahedron 62:11697CrossRefGoogle Scholar
  21. 21.
    Llamas R, Jiménez-Sanchidrian C, Ruiz JR (2007) Tetrahedron 63:1435CrossRefGoogle Scholar
  22. 22.
    Kaneda K, Ueno S, Imanaka T (1994) J Chem Soc Chem Commun: 797Google Scholar
  23. 23.
    Ueno S, Ebitani K, Ookubo A, Kaneda K (1997) Appl Surf Sci 122:366CrossRefGoogle Scholar
  24. 24.
    Kawabata T, Fujisaki N, Shishida T, Nomura K, Sano T, Takehira K (2006) J Mol Catal A Chem 253:279CrossRefGoogle Scholar
  25. 25.
    Kaneda K, Yamashita T (1996) Tetrahedron Lett 37:4555CrossRefGoogle Scholar
  26. 26.
    Zhu KZ, Liu CB, Ye XK, Wu Y (1997) Chem J Chin Univer 18:1530Google Scholar
  27. 27.
    Reichle WT (1986) Solid states Ion 22:135CrossRefGoogle Scholar
  28. 28.
    Chen CX, Xu CH, Feng LR, Li ZJ, Suo JS, Qiu FL, Yang YC (2005) Adv Synth Catal 347:1848CrossRefGoogle Scholar
  29. 29.
    Zapata B, BoSch P, Fetter G, Valenzuela MA, Navarrete J, Lara VH (2001) Inter J Inorg Mater 3:23CrossRefGoogle Scholar
  30. 30.
    Kaneda K, Ueno S, Imanaka T (1995) J Mol Catal A Chem 102:135CrossRefGoogle Scholar
  31. 31.
    Kaneda K, Ueno S (1996) ACS Symp Ser 638:300CrossRefGoogle Scholar
  32. 32.
    Kooli F, Kosuge K, Tsunashima A (1995) J Solid State Chem 118:285CrossRefGoogle Scholar
  33. 33.
    Rives V, Prieto O, Dubey A, Kannan S (2003) J Catal 220:161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Engineering, College of ScienceNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations