Catalysis Letters

, Volume 131, Issue 1–2, pp 160–163 | Cite as

Visible-light-responding Bi0.5Dy0.5VO4 Solid Solution for Photocatalytic Water Splitting

  • Qizhao Wang
  • Hui Liu
  • Li Jiang
  • Jian Yuan
  • Wenfeng Shangguan


Bi0.5Dy0.5VO4 (BDV) oxide solid solution was synthesized by a solid state reaction method and was characterized by XRD, UV–visible DRS, BET, SEM and TEM. It has an appropriate band gap energy of ca. 2.76 eV to absorb visible light, corresponding to an absorption edge of 450 nm. When Pt-Cr2O3 was co-loaded, BDV could split water under UV light and visible light. The amounts of the produced hydrogen and oxygen were about 7.27 and 3.82 μmol respectively under the irradiation of visible light (λ > 420 nm) for 2 h. This study indicated that the suitable band gap of BDV for overall water splitting might be attributed to the formation of new VB due to Bi6s participating in the electronic structure.


Photocatalyst Bi0.5Dy0.5VO4 Hydrogen Visible Solid solution 



This work was financially supported by the National Key Basic Research and Development Program (Grant No. 2009CB220000).


  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  2. 2.
    Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440:295CrossRefGoogle Scholar
  3. 3.
    Tian MK, Shangguan WF, Yuan J, Jiang L, Chen MX, Shi JW, Ouyang ZY, Wang SJ (2006) Appl Catal A 309:76CrossRefGoogle Scholar
  4. 4.
    Liu M, You W, Lei Z, Zhou G, Yang J, Wu G, Ma G (2004) Chem Commun 2192Google Scholar
  5. 5.
    Tokunaga S, Kato H, Kudo A (2001) Chem Mater 13:4624CrossRefGoogle Scholar
  6. 6.
    Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) J Am Chem Soc 124:13547CrossRefGoogle Scholar
  7. 7.
    Ishii T, Kato H, Kudo A (2004) J Photochem Photobiol A 163:181CrossRefGoogle Scholar
  8. 8.
    Kato H, Kobayashi H, Kudo AJ (2002) Phys Chem B 106:12441CrossRefGoogle Scholar
  9. 9.
    Kudo A, Kato H (2000) Chem Phys Lett 331:373CrossRefGoogle Scholar
  10. 10.
    Li D, Haneda H, Hishita S, Ohashi N (2005) Mater Sci Eng B 117:67CrossRefGoogle Scholar
  11. 11.
    Luo HM, Takata T, Lee YG, Zhao JF, Domen K, Yan Y (2004) Chem Mater 16:846CrossRefGoogle Scholar
  12. 12.
    Kudo A, Tsuji I, Kato H (2002) Chem Commun 1958Google Scholar
  13. 13.
    Yao WF, Ye JH (2006) J Phys Chem B 110:11188CrossRefGoogle Scholar
  14. 14.
    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) J Phys Chem C 111:1042CrossRefGoogle Scholar
  15. 15.
    Yuan J, Shangguan WF, Teraoka Y (2008) J Phys Chem C 112:8521CrossRefGoogle Scholar
  16. 16.
    Maeda K, Teramura K, Lu DL, Saito N, Inoue Y, Domen K (2007) Phys Chem C 111:7554CrossRefGoogle Scholar
  17. 17.
    Liu H, Yuan J, Shangguan WF (2006) Energy Fuels 20:2289CrossRefGoogle Scholar
  18. 18.
    Scaife DE (1980) Sol Energy 25:41CrossRefGoogle Scholar
  19. 19.
    Kudo A, Omori K, Kato H (1999) J Am Chem Soc 121(49):11459CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qizhao Wang
    • 1
    • 2
  • Hui Liu
    • 1
  • Li Jiang
    • 1
  • Jian Yuan
    • 1
  • Wenfeng Shangguan
    • 1
  1. 1.Research Center for Combustion and Environment TechnologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations