Catalysis Letters

, Volume 130, Issue 3–4, pp 583–587 | Cite as

Observation on Different Turnover Number in Two-phase Acid-catalyzed Esterification of Dilute Acetic Acid and 1-Heptanol

  • Supareak Praserthdam
  • Bunjerd Jongsomjit


This paper reports on the two-phase acid-catalyzed esterification of dilute acetic acid and 1-heptanol. It reveals larger turnover number of the Amberlyst 15 than sulfuric acid. It indicates that adsorbed water on protonated sites is replaced by acetic acid, then moving into the organic phase to promote the reaction.


Acetic acid Heptanol Acid catalyst Esterification Turnover number 



Authors thank the National Science and Technology Development Agency (NSTDA) under the Junior Science Talent Project (JSTP # 11) and the Thailand Research Fund (TRF) under RMU50-B. Jongsomjit for the financial support.


  1. 1.
    Bianchi CL, Ragaini V, Pirola C, Carvoli G (2003) Appl Catal B Environ 40:93CrossRefGoogle Scholar
  2. 2.
    Ragaini V, Bianchi CL, Pirola C, Carvoli G (2006) Appl Catal B Environ 64:66CrossRefGoogle Scholar
  3. 3.
    Juan JC, Zhang J, Yarmo MA (2009) Catal Lett doi: 10.1007/s10562-008-9622-2
  4. 4.
    Wilson K, Clark JH (2000) Pure Appl Chem 72:1313CrossRefGoogle Scholar
  5. 5.
    Kimura M, Nakato T, Okuhara T (1997) Appl Catal A Gen 165:227CrossRefGoogle Scholar
  6. 6.
    López DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2007) J Catal 247:43CrossRefGoogle Scholar
  7. 7.
    Peters TA, Benes NE, Holmen A, Keurentjes JTF (2006) Appl Catal A Gen 297:182CrossRefGoogle Scholar
  8. 8.
    Liu Y, Lotero E, Goodwin JG Jr (2006) J Mol Catal A Chem 245:132CrossRefGoogle Scholar
  9. 9.
    Ataya F, Dubé MA, Ternan M (2006) Ind Eng Chem Res 45:5411CrossRefGoogle Scholar
  10. 10.
    Ataya F, Dubé MA, Ternan M (2007) Energy Fuels 21:2450CrossRefGoogle Scholar
  11. 11.
    Ataya F, Dubé MA, Ternan M (2008) Energy Fuels 22:679CrossRefGoogle Scholar
  12. 12.
    Ataya F, Dubé MA, Ternan M (2008) Energy Fuels 22:3551CrossRefGoogle Scholar
  13. 13.
    López DE, Goodwin JG Jr, Bruce DA, Lotero E (2005) Appl Catal A Gen 295:97CrossRefGoogle Scholar
  14. 14.
    Kazansky VB (2001) Catal Rev Sci Eng 43:199CrossRefGoogle Scholar
  15. 15.
    Rived F, Canals I, Bosch E, Roses M (2001) Anal Chim Acta 439:315CrossRefGoogle Scholar
  16. 16.
    Pines E, Fleming GR (1991) J Phys Chem 95:10448CrossRefGoogle Scholar
  17. 17.
    Nusterer E, Blochl PE, Schwarz K (1996) Chem Phys Lett 253:448CrossRefGoogle Scholar
  18. 18.
    Liu Y, Lotero E, Goodwin JG Jr (2006) J Catal 242:278CrossRefGoogle Scholar
  19. 19.
    Lilja J, Murzin DY, Salmi T, Aumo J, Mäki-Arvela P, Sundell M (2002) J Mol Catal A Chem 182–183:555CrossRefGoogle Scholar
  20. 20.
    Kirumakki SR, Nagaraju N, Chary KVR (2006) Appl Catal A Gen 299:185CrossRefGoogle Scholar
  21. 21.
    Ajaikumar S, Pandurangan A (2007) J Mol Catal A Chem 266:1CrossRefGoogle Scholar
  22. 22.
    Teo HTR, Saha B (2004) J Catal 228:174CrossRefGoogle Scholar
  23. 23.
    Lilja J, Aumo J, Salmi T, Murzin DY, Mäki Arvela P, Sundell M, Ekman K, Peltonen R, Vainico H (2002) Appl Catal A Gen 228:253CrossRefGoogle Scholar
  24. 24.
    Rönnback R, Salmi T, Vuori A, Haario H, Lehtonen J, Sundqvist A, Tirronen E (1997) Chem Eng Sci 52:3369CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.Chulalongkorn University Demonstration Secondary School, Faculty of EducationChulalongkorn UniversityBangkokThailand

Personalised recommendations