Catalysis Letters

, Volume 130, Issue 1–2, pp 86–92 | Cite as

Catalytic Cracking of Heavy Olefins into Propylene, Ethylene and Other Light Olefins



Hybrid catalysts developed for the thermo-catalytic cracking of liquid hydrocarbons were found to be capable of cracking C4 + olefins into light olefins with very high combined yields of product ethylene and propylene (more than 60 wt%) and C2–C4 olefins (more than 80 wt%) at 610–640 °C, and also with a propylene/ethylene weight ratio being much higher than 2.4. The olefins tested were heavier than butenes such as 1-hexene, C10 + linear alpha-olefins (LAO) or a mixture of LAO. The hydrogen spillover effect promoted by the Ni bearing co-catalyst, contributed to significantly enhancing the product yield of light olefins and the on-stream stability of the hybrid catalyst.


TCC-type hybrid catalysts Cracking of heavy olefins Effect of hydrogen spillover on product yields and coke deposition 



The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Valeo Management for their financial support.


  1. 1.
    Chauvel A, Lefebvre G (1989) In: Petrochemical processes, vol. 1. Technip (Paris) (ed), pp 117Google Scholar
  2. 2.
    Plotkin JS (2005) Catal Today 106:10CrossRefGoogle Scholar
  3. 3.
    Le Van Mao R, Melançon S, Gauthier-Campbell C, Kletnieks P (2001) Catal Lett 73:181CrossRefGoogle Scholar
  4. 4.
    Melançon S, Le Van Mao R, Kletniek P, Ohayon D, Intem S, Saberi MA, McCann D (2002) Catal Lett 80:103CrossRefGoogle Scholar
  5. 5.
    Le Van Mao R, Vu NT, Al-Yassir N, François N, Monnier J (2006) Top Catal 37:107CrossRefGoogle Scholar
  6. 6.
    Le Van Mao R, Vu NT, Al-Yassir N, Yan HT (2008) Ind Eng Chem Res 47:2963CrossRefGoogle Scholar
  7. 7.
    Al-Yassir N, Le Van Mao R (2008) Can J. Chem 86:146CrossRefGoogle Scholar
  8. 8.
    Le Van Mao R (1999) Micropor Mesopor Mat 28:9CrossRefGoogle Scholar
  9. 9.
    Le Van Mao R (1988) US Pat. 4732881Google Scholar
  10. 10.
    Le Van Mao R, Al-Yassir N, Nguyen DTT (2005) Micropor Mesopor Mat 85:176CrossRefGoogle Scholar
  11. 11.
    Al-Yassir N, Le Van Mao R, Heng F (2005) Catal Lett 100:1CrossRefGoogle Scholar
  12. 12.
    Al-Yassir N (2007) Ph.D. thesis, Concordia University, MontrealGoogle Scholar
  13. 13.
    Le Van Mao R, Yao J, Dufresne L, Carli R (1996) In: Dooley K, Price G (eds) Gallium-loaded zeolites. Catal Today 31:24Google Scholar
  14. 14.
    Le Van Mao R, Yao L, Dufresne LA, Carli R, Ragaini R (1993) In: Inui T, Fujimoto F, Uchijima T, Kasai M (eds) New aspects of spillover effects in catalysis. Elsevier, Amsterdam, p 143Google Scholar
  15. 15.
    Maret D, Pajonk GM, Teichner SJ (1983) In: Pajonk GM, Teichner SJ, Germain JE (eds) Spillover of adsorbed species. Elsevier, Amsterdam, p 215CrossRefGoogle Scholar
  16. 16.
    Yan HT, Le Van Mao R (Nov. 2008) Catal Lett (submitted)Google Scholar
  17. 17.
    Curtis Conner W Jr, Falconer JL (1995) Chem Rev 95:759CrossRefGoogle Scholar
  18. 18.
    Hassan A, Fujimoto K, Tomishige K, Kusakari T, Akasaka A (2003) In: Studies in surface science and catalysis, vol. 138. Elsevier, pp 39Google Scholar
  19. 19.
    Baeza P, Villarroel M, Avila P, Agudo Lopez, Delmon B, Gil-Llambias FJ (2006) Appl Catalysis A: General 304:109CrossRefGoogle Scholar
  20. 20.
    Ueda R, Kusakari T, Tomishige K, Fujimoto K (2000) J Catal 194:14CrossRefGoogle Scholar
  21. 21.
    Le Van Mao R, PCT/CA 2008/001163, Int. filing date: 17 June 2008, Priority date: 18 June 2007Google Scholar
  22. 22.
    Stocker M (1999) Micropor Mesopor Mat 29:3CrossRefGoogle Scholar
  23. 23.
    Kiel FJ (1999) Micropor Mesopor Mat 29:49CrossRefGoogle Scholar
  24. 24.
    Olah GA, Goeppert A, Prakash GKS (2006) In: Beyond oil and gas, the methanol economy, WileyGoogle Scholar
  25. 25.
    Groupe Total, Press release (October 1st, 2008) and CEN, (October 13, 2008) p 21Google Scholar
  26. 26.
    Vermeiren W, Nesterenko N, Appl. No WO2008EP52816 20080310, publication no WO2008110530 (A1) (2008-09-18) assigned to Total Petrochemicals Res Feluy (BE)Google Scholar
  27. 27.
    Skupinska J (1991) Chem Rev 91:613CrossRefGoogle Scholar
  28. 28.
    Speiser F, Braustein P, Saussine L (2005) Acc Chem Res 38:784CrossRefGoogle Scholar
  29. 29.
    Yang P, Yang Y, Zhang C, Yang X-J, Hu H-M, Gao Y, Wu B (2009) Inorg Chim Acta 362:89CrossRefGoogle Scholar
  30. 30.
    Le Van Mao R, Al-Yassir N, Lu L, Vu NT, Fortier A (2006) Catal Lett 112:13CrossRefGoogle Scholar
  31. 31.
    Hagen J (2006) In: Industrial catalysis, a practical approach, Wiley, Weinheim, p 151Google Scholar
  32. 32.
    Kieboom APG, Moulijn JA, Sheldon RA, Van Leeuwen PWNM (1999) In: Van Santen RA, Van Leeuwen PWNM, Moulijn JA, Averill BA (eds) Catalysis: an integrated approach. Elsevier, Amsterdam, p 33Google Scholar
  33. 33.
    Dehertog WJH, Froment GF (1991) Appl Catal. 71:153CrossRefGoogle Scholar
  34. 34.
    Wan J, Wei Y, Liu Z, Li B, Qi Y, Li M, Xie P, Meng S, He Y, Chang F (2008) Catal Lett 124:150CrossRefGoogle Scholar
  35. 35.
    Buchanan JS (2000) Catal Today 55:207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Le Van Mao
    • 1
  • A. Muntasar
    • 1
  • H. T. Yan
    • 1
  • Q. Zhao
    • 1
  1. 1.Industrial Catalysis Laboratory, Department of Chemistry and BiochemistryConcordia UniversityMontrealCanada

Personalised recommendations