Catalysis Letters

, Volume 130, Issue 3–4, pp 564–567 | Cite as

Enantioselective Hydrogenation in Water Over Chiral Modified Heterogeneous Catalyst Admixed With Organic Solvent

  • Takashi Sugimura
  • Tae Yeon Kim


Hydrogenation of α,β-unsaturated acid over cinchonidine-modified Pd/C results in poor enantioselectivity in water, but the selectivity becomes much higher when Pd/C is admixed with a small amount of a hydrophobic water-insoluble organic solvent. With the admixed catalyst, the product is easily removed by separation of the aqueous phase under the hydrogen atmosphere and the remaining catalyst can be reused.


Enantioselective Hydrogenation Pd/C Aqueous Unsaturated acid 



This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 20037058, “Chemistry of Concerto Catalysis”) from MEXT of Japan, and by Global COE program from JSPS. The authors thank Emeritus Professor Okuyama for his helpful discussions, and N.E. CHEMCAT Co. for donating the Pd/C catalysts.


  1. 1.
    Grieco PA (ed) (1997) Organic synthesis in water. Blackie Academic, LondonGoogle Scholar
  2. 2.
    Le CJ, Chan TH (1997) Organic reactions in aqueous media. Wiley, New YorkGoogle Scholar
  3. 3.
    Lindström UM (2007) Organic reactions in water, Blackwell, OxfordGoogle Scholar
  4. 4.
    Breslow R (1991) Acc Chem Res 24:159 and references thereinCrossRefGoogle Scholar
  5. 5.
    De Bos DE, Vankelecom IF, Jacobs PA (2000) Chiral catalyst immobilization and recycling, Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Klabunovskii E, Smith GV, Zsigmond A (2006) Heterogeneous enantioselective hydrogenation. Springer, DordrechtCrossRefGoogle Scholar
  7. 7.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863CrossRefGoogle Scholar
  8. 8.
    Sugimura T (2008) In: Ding K, Uozumi Y(ed) Handbook of asymmetric heterogeneous catalysis, Wiley-VCH, VerlagsgesellschaftGoogle Scholar
  9. 9.
    Fedföldi K, Szöri K, Bartók M (2003) Appl Catal A General 251:457CrossRefGoogle Scholar
  10. 10.
    Perez JRG, Malthête J, Jacques JCR (1985) Acad Sc Paris, 300:169Google Scholar
  11. 11.
    Nitta Y, Watanabe J, Okuyama T, Sugimura T (2005) J Catal 236:164CrossRefGoogle Scholar
  12. 12.
    Nitta Y, Kobiro K, Okamoto Y (1997) In: Blaser U, Baiker A, Prins P (ed) Heterogeneous catalysis and fine chemicals IV, Elsevier, Amsterdam, p. 191Google Scholar
  13. 13.
    Sugimura T, Uchida T, Watanabe J, Kubota T, Okamoto Y, Misaki T, Okuyama T (2009) J Catal 262:57CrossRefGoogle Scholar
  14. 14.
    Nitta Y (2000) Topics Catal 13:179CrossRefGoogle Scholar
  15. 15.
    Borszeky K, Mallat T, Baiker A (1996) Catal Lett 41:199CrossRefGoogle Scholar
  16. 16.
    Nitta Y (1999) Chem Lett 635Google Scholar
  17. 17.
    Szöllösi G, Hanaoka T, Niwa S, Mizukami F, Bartók M (2005) J Catal 231:480CrossRefGoogle Scholar
  18. 18.
    Nitta Y, Kobiro K (1995) Chem Lett 165Google Scholar
  19. 19.
    Borszeky K, Mallat T, Baiker A (1997) Tetrahedron: Asymmetry 8:3745CrossRefGoogle Scholar
  20. 20.
    Huck WR, Mallat T, Baiker A (2000) J Cata 193:1CrossRefGoogle Scholar
  21. 21.
    Sípos E, Tungler A (2003) React Kinet Catal Lett 80:365CrossRefGoogle Scholar
  22. 22.
    Cornils B, Herrmann WA (1998) Aqueous-phase organometallic catalysis, concepts and applications, Wiley-VCH, WeinheimGoogle Scholar
  23. 23.
    Wiebus E, Cornils B (2007) In: Lindström UM (ed) Organic reactions in water Blackwell, Oxford, p. 366Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Graduate School of Material ScienceUniversity of HyogoKamigori, Ako-gun, HyogoJapan

Personalised recommendations