Catalysis Letters

, Volume 131, Issue 1–2, pp 114–121 | Cite as

The Interaction Between SrFeCo0.5O x Ceramic Membranes and Pt/CeZrO2 During Syngas Production from Methane

  • Sedigheh Faraji
  • Karen J. Nordheden
  • Susan M. Stagg-Williams


Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane to higher value products. In this work, the role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance.


Ceramic membranes Pt/ZrO2 Pt/CeZrO2 SFC Oxygen permeation CO2 reforming Mixing effect Syngas production 



Financial support for this project was provided by the Office of Naval Research (N00014-03-1-0601) and the US Department of Transportation Research Innovative Technology Administration (DTOS59-06-G-0047). The authors also thank MEL chemicals for providing the catalyst supports.


  1. 1.
    Bouwmeester HJ (2003) Catal Today 82:141CrossRefGoogle Scholar
  2. 2.
    Slade DA, Duncan AM, Nordheden KJ, Stagg-Williams SM (2007) Green Chem 9:577CrossRefGoogle Scholar
  3. 3.
    Jacobson AJ, Kim S, Medina A, Yang YL, Abeles B (1998) Mat Res Soc Symp Proc 497:29Google Scholar
  4. 4.
    Tsai CY, Dixon AG, Moser WR, Ma YH (1997) AIChE J 43:2741CrossRefGoogle Scholar
  5. 5.
    Zhu W, Han W, Xiong G, Yang W (2005) Catal Today 104:149CrossRefGoogle Scholar
  6. 6.
    Zhu W, Han W, Xiong G, Yang W (2006) Catal Today 118:39CrossRefGoogle Scholar
  7. 7.
    Wang H, Tablet C, Yang W, Caro J (2005) Mater Letters 59:3750CrossRefGoogle Scholar
  8. 8.
    Etchegoyen G, Chartier E, Del-Gallo P (2006) J Solid State Electrochem 10:597CrossRefGoogle Scholar
  9. 9.
    Zeng P, Chen Z, Zhou W, Gu H, Shao Z, Liu S (2007) J Memb Sci 291:148CrossRefGoogle Scholar
  10. 10.
    Maiya PS, Balachandran U, Dusek JT, Mieville RL, Kleefisch MS, Udovich CA (1997) Solid State Ionics 99:1CrossRefGoogle Scholar
  11. 11.
    Ma B, Victory NI, Balachandran U, Mitchell BJ, Richardson JW (2002) J Am Ceram Soc 85:2641CrossRefGoogle Scholar
  12. 12.
    Ma B, Balachandran U (1998) Mat Res Bull 33:223CrossRefGoogle Scholar
  13. 13.
    Jiang Q, Faraji S, Slade DA, Nordheden KJ, Stagg-Williams SM (2007) In AIChE annual meeting, Paper no. 509aO, Salt Lake CityGoogle Scholar
  14. 14.
    Poulidi D, Craig A, Metcalfe IS (2008) Solid State Ionics 179:1347CrossRefGoogle Scholar
  15. 15.
    York APE, Xiao T, Green MLH (2003) Top Catal 22:345CrossRefGoogle Scholar
  16. 16.
    Hu YH, Ruckenstein E (2004) Adv Catal 48:297CrossRefGoogle Scholar
  17. 17.
    Zhang X, Lee CSM, Hayward DO (2005) Catal Today 105:283CrossRefGoogle Scholar
  18. 18.
    Galvita V, Rihko-Struckmann LK, Sundmacher K (2008) J Mole Catal A: Chem 283:43CrossRefGoogle Scholar
  19. 19.
    Kaus I, Wiik K (2007) J Am Ceram Soc 90:2226CrossRefGoogle Scholar
  20. 20.
    Murphy SM, Slade DA, Nordheden KJ, Stagg-Williams SM (2006) J Memb Sci 277:94CrossRefGoogle Scholar
  21. 21.
    Jiang Q, Nordheden KJ, Stagg-Williams SM (2008) Submitted to J Memb SciGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sedigheh Faraji
    • 1
  • Karen J. Nordheden
    • 1
  • Susan M. Stagg-Williams
    • 1
  1. 1.Chemical and Petroleum Engineering DepartmentThe University of KansasLawrenceUSA

Personalised recommendations