Catalysis Letters

, Volume 130, Issue 3–4, pp 622–629 | Cite as

A Study on the Relationship Between Low-Temperature Reducibility and Catalytic Performance of Single-Crystalline La0.6Sr0.4MnO3+δ Microcubes for Toluene Combustion

  • Jiguang Deng
  • Lei Zhang
  • Hongxing Dai
  • Chak Tong Au


Single-crystalline La0.6Sr0.4MnO3+δ microcubes of cubic perovskite phase were prepared hydrothermally. The adopted temperature and time of hydrothermal treatment and the amount of KOH used had great effects on the low-temperature reducibility of La0.6Sr0.4MnO3+δ . The initial H2 consumption rate of La0.6Sr0.4MnO3+δ played a vital role in determining its catalytic activity for toluene combustion. It is concluded that the perovskite-type oxide catalyst with a higher initial H2 consumption rate displayed a higher catalytic activity for the addressed reaction.


Hydrothermal synthesis Volatile organic compounds Single-crystalline perovskite-type oxides Reducibility Initial reduction rate 



The work described above was supported by the RGC, Hong Kong Special Administration Region (Grant HKBU 200106). The research activities in Beijing University of Technology were supported by the Natural Science Foundation of Beijing Municipality (Key Class B project of grant number KZ200610005004), the Funding Project (PHR200907105) Administered by the Beijing Municipal Commission of Education, and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR (IHLB)).


  1. 1.
    Alifanti M, Florea M, Somacescu S, Parvulescu VI (2005) Appl Catal B 60:33CrossRefGoogle Scholar
  2. 2.
    Li N, Boréave A, Deloume JP, Gaillard F (2008) Solid State Ionics 179:1396CrossRefGoogle Scholar
  3. 3.
    Peña MA, Fierro JLG (2001) Chem Rev 101:1981CrossRefGoogle Scholar
  4. 4.
    Wang D, Yu RB, Feng SH, Zheng WJ, Xu RR, Matsumura Y, Takano M (2003) Chem Lett 32:74CrossRefGoogle Scholar
  5. 5.
    Wang D, Yu RB, Feng SH, Zheng WJ, Pang GS, Zhao H (1998) Chem J Chin Univ 19:165Google Scholar
  6. 6.
    Mori M, Iwanoto Y, Asamoto M, Itagaki Y, Yahiro H, Sadaoka Y, Takase S, Shimizu Y, Yuasa M, Shimanoe K, Kusaba H, Teraoka Y (2008) Catal Today 139:125CrossRefGoogle Scholar
  7. 7.
    Teng F, Han W, Liang S, Gaugeu B, Zong R, Zhu Y (2007) J Catal 250:1CrossRefGoogle Scholar
  8. 8.
    Deng J, Zhang Y, Dai H, Zhang L, He H, Au CT (2008) Catal Today 139:82CrossRefGoogle Scholar
  9. 9.
    Deng J, Zhang L, Dai H, He H, Au CT (2009) J Mol Catal A 299:60CrossRefGoogle Scholar
  10. 10.
    Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) Solid State Sci 4:125CrossRefGoogle Scholar
  11. 11.
    Lee YN, Lago RM, Fierro JLG, González J (2001) Appl Catal A 215:245CrossRefGoogle Scholar
  12. 12.
    Kucharczyk B, Tylus W (2008) Appl Catal A 335:28CrossRefGoogle Scholar
  13. 13.
    Ponce S, Peña MA, Fierro JLG (2000) Appl Catal B 24:193CrossRefGoogle Scholar
  14. 14.
    Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S (2004) J Catal 227:282CrossRefGoogle Scholar
  15. 15.
    Barbero BP, Gamboa JA, Cadús LE (2006) Appl Catal B 65:21CrossRefGoogle Scholar
  16. 16.
    Niu J, Deng J, Liu W, Zhang L, Wang G, Dai H, He H, Zi X (2007) Catal Today 126:420CrossRefGoogle Scholar
  17. 17.
    Lisi L, Bagnasco G, Ciambelli P, De Rossi S, Porta P, Russo G, Turco M (1999) J Solid State Chem 146:176CrossRefGoogle Scholar
  18. 18.
    Ciambelli P, Cimino S, De Rossi S, Faticanti M, Lisi L, Minelli G, Pettiti I, Porta P, Russo G, Turco M (2000) Appl Catal B 24:243CrossRefGoogle Scholar
  19. 19.
    Pai MR, Wani BN, Sreedhar B, Singh S, Gupta NM (2006) J Mol Catal A 246:128CrossRefGoogle Scholar
  20. 20.
    Buciuman FC, Patcas F, Menezo JC, Barbier J, Hahn T, Lintz HG (2002) Appl Catal B 35:175CrossRefGoogle Scholar
  21. 21.
    Lee YN, Lago RM, Fierro JLG, Cortés V, Sapiña F, Martínez E (2001) Appl Catal A 207:17CrossRefGoogle Scholar
  22. 22.
    Irusta S, Pina MP, Menéndez M, Santamaría J (1998) J Catal 179:400CrossRefGoogle Scholar
  23. 23.
    Kuhn JN, Ozkan US (2008) Catal Lett 121:179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China
  2. 2.Department of ChemistryHong Kong Baptist UniversityKowloon Tong, Hong KongPeople’s Republic of China

Personalised recommendations