Catalysis Letters

, Volume 131, Issue 3–4, pp 451–457 | Cite as

Catalytic Hydrogenation of Aqueous Phase Nitrate Over Fe/C Catalysts

  • Anshu Shukla
  • Jayshri V. Pande
  • Amit Bansiwal
  • Petre Osiceanu
  • Rajesh B. Biniwale


Catalytic hydrogenation of nitrate in water has been carried out over Fe/C catalysts at ambient temperature using batch and continuous reactors. In batch reaction nitrate reduction activity of 2.9 mmol g metal −1  min−1 with nearly 100% selectivity towards nitrogen was obtained. Column study shows nitrate reduction below 5 ppm for an initial concentration of 100 ppm. Break through capacity, to reach concentration of 45 mg L−1, is more than 530 bed volumes. The catalysts were characterized using XRD, SEM–EDAX and XPS. With high selectivity and activity the catalytic system in present study could be a potential option for nitrate removal from water.


Catalytic hydrogenation Fe/C catalyst Water treatment Nitrate 



Authors would like to gratefully acknowledge the financial support from Rajiv Gandhi National Drinking Water Works Mission, Ministry of Rural Development, New Delhi. We also acknowledge Dr. B. Sreedhar, scientist, Indian Institute of Chemical Technology, Hyderabad for carrying out XPS analysis.


  1. 1.
    Pintar A, Batista J, Levee J, Kajiuchi T (1996) Appl Cat B: Environ 11:81–98CrossRefGoogle Scholar
  2. 2.
    Gupta SK, Gupta RC, Seth AK, Gupta AB, Bassin JK, Gupta A (2000) Natl Med J India 13:58–61Google Scholar
  3. 3.
    Rocca CD, Belgiorno V, Meric S (2006) Desalination 204:46–62Google Scholar
  4. 4.
    Daub K, Emig G, Chollier M-J, Callant M, Dittmeyer R (2001) Catal Today 67:257–272CrossRefGoogle Scholar
  5. 5.
    Prüsse U, Vorlop KD (2001) J Mol Catal A: Chem 173:313–328CrossRefGoogle Scholar
  6. 6.
    Barrabe′s N, Just J, Dafinov A, Medina F, Fierro JLG, Sueiras JE, Salagre P, Cesteros Y (2006) Appl Cat B: Environ 62:77–85CrossRefGoogle Scholar
  7. 7.
    Daub K, Emig G, Chollier M-J, Callant M, Dittmeyer R (1999) Chem Eng Sci 54:1577–1582CrossRefGoogle Scholar
  8. 8.
    Cheng F, Muftikian R, Fernando Q, Korte N (1997) Chemosphere 35:2689–2695CrossRefGoogle Scholar
  9. 9.
    Huang YH, Zhang TC (2004) Water Res 38:2631–2642CrossRefGoogle Scholar
  10. 10.
    Chen YM, Li CW, Chen SS (2005) Chemosphere 59:753–759CrossRefGoogle Scholar
  11. 11.
    Huang YH, Zhang TC, Shea PJ, Comfort SD (2003) J Environ Qual 32:1306–1315CrossRefGoogle Scholar
  12. 12.
    Soares OSGP, Orfao JJM, Pereira MFR (2008) Catal Lett 126:253–260CrossRefGoogle Scholar
  13. 13.
    Afkhami A, Madrakian T, Maleki A (2006) Anal Sci 22:329–331CrossRefGoogle Scholar
  14. 14.
    Fuji T, Groot FM, Sawatzky GA, Voogts FC, Hibma T, Okada K (1999) Phys Rev B 59:3195–3202CrossRefGoogle Scholar
  15. 15.
    Li CW, Chen YM, Yen WS Chemosphere 68:310–316Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anshu Shukla
    • 1
  • Jayshri V. Pande
    • 1
  • Amit Bansiwal
    • 1
  • Petre Osiceanu
    • 2
  • Rajesh B. Biniwale
    • 1
  1. 1.National Environmental Engineering Research Institute (NEERI), CSIRNagpurIndia
  2. 2.Institute of Physical Chemistry, Romanian Academy of ScienceBucharestRomania

Personalised recommendations