Catalysis Letters

, Volume 130, Issue 1–2, pp 79–85 | Cite as

Influence of Synthesis Conditions for ZSM-5 on the Hydrothermal Stability of Cu-ZSM-5

  • Malin Berggrund
  • Hanna Härelind Ingelsten
  • Magnus Skoglundh
  • Anders E. C. Palmqvist


The influence of syntheses parameters of zeolite ZSM-5 on the lean NO x reduction activity and hydrothermal stability of Cu-ZSM-5 has been investigated. The hydrothermal stability of Cu-ZSM-5 was found to depend on the aluminium source used and on the presence of Ca(OH)2 in the synthesis mixture for ZSM-5.


Cu-ZSM-5 Synthesis conditions Lean NOx conversion Calcium hydroxide Hydrothermal stability Aging deNOx HC-SCR 



This work has been performed within the EMFO programme, which is funded by the Swedish Agency for innovation systems, the Swedish road administration and the Swedish Environmental Protection Agency, and carried out at the Competence Centre for Catalysis, which is financially supported by the Swedish Energy Agency, AB Volvo, Volvo Car Corporation, Scania CV AB, GM Powertrain Sweden AB, Haldor Topsøe A/S and the Swedish Space Corporation. Financial support from Knut and Alice Wallenberg Foundation, Dnr KAW 2005.0055, is gratefully acknowledged.


  1. 1.
    Iwamoto M, Yahiro H, Yuu Y, Shundo S, Mizuno N (1990) Shokubai 32(6):430–433Google Scholar
  2. 2.
    Koenig A, Held W, Richter T (2004) Top Catal 28(1–4):99–103CrossRefGoogle Scholar
  3. 3.
    Kharas KCC, Robota HJ, Liu DJ (1993) Appl Catal B Environ 2(2–3):225–237CrossRefGoogle Scholar
  4. 4.
    Gómez SA, Campero A, Martinez-Hernandez A, Fuentes GA (2000) Appl Catal A Gen 197(1):157–164CrossRefGoogle Scholar
  5. 5.
    Houel V, James D, Millington P, Pollington S, Poulston S, Rajaram R, Torbati R (2005) J Catal 230(1):150–157CrossRefGoogle Scholar
  6. 6.
    Kucherov AV, Gerlock JL, Jen H-W, Shelef M (1995) J Catal 152(1):63–69CrossRefGoogle Scholar
  7. 7.
    Matsumoto S, Yokota K, Doi H, Kimura M, Sekizawa K, Kasahara S (1994) Catal Today 22(1):127–146CrossRefGoogle Scholar
  8. 8.
    Quincoces CE, Kikot A, Basaldella EI, Gonzalez MG (1999) Ind Eng Chem Res 38(11):4236–4240CrossRefGoogle Scholar
  9. 9.
    Rokosz MJ, Kucherov AV, Jen HW, Shelef M (1997) Catal Today 35(1–2):65–73CrossRefGoogle Scholar
  10. 10.
    Tanabe T, Iijima T, Koiwai A, Mizuno J, Yokotam K, Isogai A (1995) Appl Catal B Environ 6(2):145–153CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Flytzani-Stephanopoulos M (1996) J Catal 164(1):131–145CrossRefGoogle Scholar
  12. 12.
    Chajar Z, Denton P, De Bernard FB, Primet M, Praliaud H (1998) Catal Lett 55(3,4):217–222CrossRefGoogle Scholar
  13. 13.
    Kucherov AV, Hubbard CP, Kucherova TN, Shelef M (1997) Stud Surf Sci Catal 105B:1469–1476 (Progress in Zeolite and Microporous Materials, Pt. B)CrossRefGoogle Scholar
  14. 14.
    Kucherov AV, Kucherova TN, Slinkin AA (1995) Stud Surf Sci Catal 94:657–664 (Catalysis by Microporous Materials)CrossRefGoogle Scholar
  15. 15.
    Palella BI, Lisi L, Pirone R, Russo G, Notaro M (2006) Kinet Catal 47(5):728–736CrossRefGoogle Scholar
  16. 16.
    Pârvulescu VI, Centeno MA, Grange P, Delmon B (2000) Journal of Catalysis 191(2):445–455CrossRefGoogle Scholar
  17. 17.
    Praserthdram P, Phatanasri S, Rungsimanop J, Kanchanawanichkun P (2001) J Mol Catal A Chem 169(1–2):113–126CrossRefGoogle Scholar
  18. 18.
    Wierzchowski PT, Zatorski LW (2002) Catal Lett 78(1–4):171–176CrossRefGoogle Scholar
  19. 19.
    Landong L, Jixin C, Shujuan Z, Fuxiang Z, Naijia G, Tianyou W, Shuliang L (2005) Environ Sci Technol 39(8):2841–2847CrossRefGoogle Scholar
  20. 20.
    Davidová M, Sauer J, Sierka M, Nachtigall P (2004) Abstract of the 14’th International Zeolite Conference. Cape Town, South AfricaGoogle Scholar
  21. 21.
    Gábová V, Dědeček J, Čejka J (2003) Chem Commun (Cambridge United Kingdom) (10): 1196–1197Google Scholar
  22. 22.
    Berggrund M, Skoglundh M, Palmqvist AEC (2007) Top Catal 42/43:153–156CrossRefGoogle Scholar
  23. 23.
    Grinsted RA, Jen HW, Montreuil CN, Rokosz MJ, Shelef M (1993) Zeolites 13(8):602–606CrossRefGoogle Scholar
  24. 24.
    Sano T, Murakami T, Suzuki K, Ikai S, Okado H, Kawamura K, Hagiwara H, Takaya H (1987) Appl Catal 33(1):209–217CrossRefGoogle Scholar
  25. 25.
    Kucherov AV, Shigapov AN, Ivanov AA, Shelef M (1999) Journal of Catalysis 186(2):334–344CrossRefGoogle Scholar
  26. 26.
    Keiski RL, Raeisaenen H, Haerkoenen M, Maunula T, Niemistoe P (1996) Catal Today 27(1–2):85–90CrossRefGoogle Scholar
  27. 27.
    Hwang IC, Kim DH, Woo SI (1996) Catal Lett 42(3,4):177–184CrossRefGoogle Scholar
  28. 28.
    Park S-K, Park Y-K, Park S-E, Kevan L (2000) Phys Chem Chem Phys 2(23):5500–5509CrossRefGoogle Scholar
  29. 29.
    Shelef M (1995) Chem Rev (Wash DC) 95(1):209–225Google Scholar
  30. 30.
    Tounsi H, Djemel S, Ghorbel A, Delahay G, de Menorval LC, Coq B (2004) React Kinet Catal Lett 81(1):33–40CrossRefGoogle Scholar
  31. 31.
    Ansell GP, Diwell AF, Golunski SE, Hayes JW, Rajaram RR, Truex TJ, Walker AP (1993) Appl Catal B Environ 2(1):81–100CrossRefGoogle Scholar
  32. 32.
    Huang HY, Long RQ, Yang RT (2001) Energy & Fuels 15(1):205–213CrossRefGoogle Scholar
  33. 33.
    Sadykov VA, Baron SL, Matyshak VA, Alikina GM, Bunina RV, Rozovskii AY, Lunin VV, Lunina EV, Kharlanov AN, Ivanova AS, Veniaminov SA (1996) Catal Lett 37(3,4):157–162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Malin Berggrund
    • 1
  • Hanna Härelind Ingelsten
    • 1
  • Magnus Skoglundh
    • 1
  • Anders E. C. Palmqvist
    • 1
  1. 1.Competence Centre for CatalysisChalmers University of TechnologyGothenburgSweden

Personalised recommendations