Catalysis Letters

, Volume 130, Issue 1–2, pp 48–51 | Cite as

Catalytic Deoxygenation of Stearic Acid and Palmitic Acid in Semibatch Mode

  • Siswati Lestari
  • Päivi Mäki-Arvela
  • Irina Simakova
  • Jorge Beltramini
  • G. Q. Max Lu
  • Dmitry Yu. Murzin


The deoxygenation experiments of different reactants, i.e., pure palmitic acid, stearic acid, and a technical grade stearic acid containing a mixture of 59% of palmitic and 40% of stearic acid were successfully performed over 4 wt% Pd/C mesoporous catalyst at 300 °C under 17 bar of 5% H2 in argon. The main product in catalytic deoxygenation of saturated fatty acids, C16 and C18, were aliphatic chain length hydrocarbons containing one less carbon than the corresponding acid. Additionally it was found that the deoxygenation rates of different reactant were independent on carbon chain length of its fatty acids.


Green diesel Deoxygenation Stearic acid Palmitic acid 



This work is part of the activities at the Åbo Akademi University Process Chemistry Centre within the Finnish Centre of Excellence Program (2000–2011) appointed by the Academy of Finland. S. L. would like to acknowledge also the travel grant support by ARC Centre of Excellence for Functional Nanomaterials, University of Queensland, Australia and Johan Gadolin Scholarship Process Chemistry Centre Åbo Akademi University. The authors are grateful to Mr. S. Lindholm from Process Chemistry Centre, Åbo Akademi for performing ICP-OES measurements.


  1. 1.
    Ramadhas AS, Jayaraj S, Muraleedharan C (2004) Renew Energy 29:727CrossRefGoogle Scholar
  2. 2.
    Gerpen JV (2005) Fuel Process Technol 86:1097CrossRefGoogle Scholar
  3. 3.
    Addison K (2008) Oil yields and characteristic. Journey to forever accessed 9 Jan 2009
  4. 4.
    Ma F, Hanna MA (1999) Bioresource Technol 70:1CrossRefGoogle Scholar
  5. 5.
    Xie W, Peng H, Chen L (2006) App Catal A: Gen 300:67CrossRefGoogle Scholar
  6. 6.
    Ghadge SV, Raheman H (2005) Biomass and Bioenergy 28:601CrossRefGoogle Scholar
  7. 7.
    Kubickova I, Snåre M, Eränen K, Mäki-Arvela P, Murzin DYu (2005) Catal Today 106:197CrossRefGoogle Scholar
  8. 8.
    Lestari S, Simakova I, Tokarev A, Mäki-Arvela P, Eränen K, Murzin DYu (2008) Catal Lett 122:247CrossRefGoogle Scholar
  9. 9.
    Snåre M, Murzin DYu (2006) Ind Eng Chem Res 45:6875CrossRefGoogle Scholar
  10. 10.
    Mäki-Arvela P, Kubickova I, Eränen K, Snåre M, Murzin DYu (2007) Energy Fuels 21:30CrossRefGoogle Scholar
  11. 11.
    Snåre M, Kubickova I, Mäki-Arvela P, Eränen K, Wärnå J, Murzin DYu (2007) Chem Eng J 134:29CrossRefGoogle Scholar
  12. 12.
    Snåre M, Kubickova I, Mäki-Arvela P, Chichova D, Eränen K, Murzin DYu (2008) Fuel 87:933CrossRefGoogle Scholar
  13. 13.
    Murzin DYu, Kubickova I, Snåre M, Mäki-Arvela P, Myllyoja J (2006) PCT International application WO2006-FI50031 20060116, p 21Google Scholar
  14. 14.
    Snåre M, Kubickova I, Mäki-Arvela P, Eränen K, Murzin DYu (2006) Ind Eng Chem Res 45:5708CrossRefGoogle Scholar
  15. 15.
    Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DYu (2009) Appl Catal A: Gen (accepted)Google Scholar
  16. 16.
    Simonov P, Troitskii S, Likholobov V (2000) Kinet Catal 41:255Google Scholar
  17. 17.
    Simakova I, Simakova O, Mäki-Arvela P, Murzin DYu (2008) Proceedings of the 3rd International symposium on carbon for catalysis, CarboCat III, Berlin, p 105Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Siswati Lestari
    • 1
    • 2
  • Päivi Mäki-Arvela
    • 2
  • Irina Simakova
    • 3
  • Jorge Beltramini
    • 1
  • G. Q. Max Lu
    • 1
  • Dmitry Yu. Murzin
    • 2
  1. 1.ARC Centre of Excellence for Functional NanomaterialsUniversity of QueenslandBrisbaneAustralia
  2. 2.Laboratory of Industrial ChemistryÅbo Akademi UniversityTurkuFinland
  3. 3.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations