Catalysis Letters

, Volume 130, Issue 1–2, pp 227–234 | Cite as

Microwave-assisted Synthesis and Structural Characterization of Nanosized Ce0.5Zr0.5O2 for CO Oxidation



Nanosized Ce0.5Zr0.5O2 solid solution has been synthesized by microwave-induced solution combustion method (MWCZ) and compared with that of a Ce x Zr1−x O2 solid solution with the same composition but prepared by the conventional coprecipitation method (CPCZ) and calcined at 773 K. X-ray diffraction and cell parameter studies revealed the incorporation of more zirconia and formation of more defect sites in the ceria lattice of the material prepared by microwave method. Raman spectroscopic measurements suggested the presence of oxygen vacancies, lattice defects and displacement of oxygen ions from their ideal lattice positions. X-ray photo electron spectroscopic studies indicated a high reducibility and surface enrichment of Ce3+ ions in the MWCZ sample. Better oxygen storage capacity and CO oxidation activity was observed for MWCZ in comparison to that of CPCZ sample. The significance of the microwave method lies mainly in its simplicity, flexibility, and easy control of different factors that determine the activity of the mixed oxide.


Microwave synthesis Ceria–zirconia Nano-oxides Catalyst characterization Raman spectroscopy X-ray diffraction CO oxidation 



GKR thank UGC, New Delhi for senior research fellowship. The support of CICECO is acknowledged.


  1. 1.
    Min K, Song MW, Lee CH (2003) Appl Catal A Gen 251:143–156CrossRefGoogle Scholar
  2. 2.
    Song KS, Klvana D, Kirchnerova J (2001) Appl Catal A Gen 213:113–121CrossRefGoogle Scholar
  3. 3.
    Zamostny P, Belohlav Z (2002) Appl Catal A Gen 225:291–299CrossRefGoogle Scholar
  4. 4.
    Baldi M, Finocchio E, Milella F, Busca G (1998) Appl Catal B Environ 16:43–51CrossRefGoogle Scholar
  5. 5.
    Burgos N, Paulis M, Antxustegi MM, Montes M (2002) Appl Catal B Environ 38:251–258CrossRefGoogle Scholar
  6. 6.
    Naydenov A, Stoyanova R, Mehandjiev D (1995) J Mol Catal 98:9–14CrossRefGoogle Scholar
  7. 7.
    Martinez-Arias A, Fernandez-Garcia M, Galvez O, Coronado JM, Anderson JA, Conesa JC, Soria J, Munuera G (2000) J Catal 195:207–216CrossRefGoogle Scholar
  8. 8.
    Trovarelli A (2002) Catalysis by ceria and related materials In: Hutchings GJ (Series Editor), Catalytic Science Series, Vol. 2, Imperial College Press, LondonGoogle Scholar
  9. 9.
    Schmieg SJ, Belton DN (1995) Appl Catal B Environ 6:127–144CrossRefGoogle Scholar
  10. 10.
    Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285–298CrossRefGoogle Scholar
  11. 11.
    Fornasiero P, Di Monte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) J Catal 151:168–177CrossRefGoogle Scholar
  12. 12.
    Trovarelli A, Leitenburg C, Dolcetti G (1997) Chem Tech 27:32–37Google Scholar
  13. 13.
    Rossignol S, Madier Y, Duprez D (1999) Catal Today 50:261–270CrossRefGoogle Scholar
  14. 14.
    Colon G, Pijolat M, Valdivieso F, Vidal H, Kaspar J, Finocchio E, Daturi M, Binet C, Lavalley JC, Baker RT, Bernal S (1998) J Chem Soc Faraday Trans 94:3717–3726CrossRefGoogle Scholar
  15. 15.
    Mingos DMP, Baghurst DR (1991) Chem Soc Rev 20:1–47CrossRefGoogle Scholar
  16. 16.
    Fu Y-P, Lin C-H (2003) J Alloys Compds 354:232–235CrossRefGoogle Scholar
  17. 17.
    Ganesh I, Johnson R, Mahajan YR, Madhavendra SS, Reddy BM (2005) Ceram Inter 31:67–74CrossRefGoogle Scholar
  18. 18.
    Clark DE, Amad I, Dalton RC (1991) Mat Sci Eng A 144:91–97CrossRefGoogle Scholar
  19. 19.
    Ganesh I, Johnson R, Mahajan YR, Khan A, Madhavendra SS, Reddy BM (2004) J Mater Res 19:1015–1023CrossRefGoogle Scholar
  20. 20.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Reddy BM, Khan A (2005) Catal Surv Asia 9:155–171CrossRefGoogle Scholar
  22. 22.
    Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) In: Muilenberg GE (ed) Handbook of X-ray photoelectron spectroscopy. Perkin–Elmer Corporation, MinnesotaGoogle Scholar
  23. 23.
    Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Gruenert W (2007) J Phys Chem C 111:10478–10483CrossRefGoogle Scholar
  24. 24.
    Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Science 309:752–755CrossRefGoogle Scholar
  25. 25.
    Meriani S, Spinolo G (1987) Powder Diffr 2:255–256Google Scholar
  26. 26.
    Bernal S, Kaspar J, Trovarelli A (1999) Catal Today 50:173–186 (Special Issue)CrossRefGoogle Scholar
  27. 27.
    Putna ES, Vohs JM, Gorte RJ (1996) J Phys Chem 100:17862–17865CrossRefGoogle Scholar
  28. 28.
    McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435–2441CrossRefGoogle Scholar
  29. 29.
    Lin X–M, Li L-P, Li G-S, Su W-H (2001) Mater Chem Phys 69:236–240CrossRefGoogle Scholar
  30. 30.
    Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Phys Rev B 64:245407.1–245407.8CrossRefGoogle Scholar
  31. 31.
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Langmuir 19:3025–3030CrossRefGoogle Scholar
  32. 32.
    Weber WH, Hass KC, McBride JR (1993) Phys ReV B 48:178–185CrossRefGoogle Scholar
  33. 33.
    Reddy BM, Lakshmanan P, Khan A, Loridant S, Cartes CL, Rojas TC, Fernandez AJ (2005) J Phys Chem B 109:13545–13552CrossRefGoogle Scholar
  34. 34.
    Escribano VS, Lopez EF, Panizza M, Resini C, Amores JMG, Busca G (2003) Solid State Sci 5:1369–1376CrossRefGoogle Scholar
  35. 35.
    Vlaic G, Fornasiero P, Geremia S, Kaspar J, Graziani M (1997) J Catal 168:386–392CrossRefGoogle Scholar
  36. 36.
    Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) J Am Ceram Soc 77:1067–1071CrossRefGoogle Scholar
  37. 37.
    Rango R, Kaspar G, Meriani S, di Monte R, Graziani M (1994) Catal Lett 24:107–112CrossRefGoogle Scholar
  38. 38.
    Burroughs P, Hamnett A, Orchard A, Thornton G (1976) J Chem Soc Dalton Trans 1686–1698Google Scholar
  39. 39.
    Albero JS, Reinoso FR, Escribano AS (2002) J Catal 210:127–136CrossRefGoogle Scholar
  40. 40.
    Barr TL, Fries CE, Cariati F, Bart JCJ, Giordano N (1983) J Chem Soc Dalton Trans 1825–1829Google Scholar
  41. 41.
    Bensalem A, Bozon-Verduraz F, Delamar M, Bugli G (1995) Appl Catal A Gen 121:81–93CrossRefGoogle Scholar
  42. 42.
    Fallah JE, Hilaire L, Romeo M, Le Normand F (1995) J Electron Spectrosc Relat Phenom 73:89–103CrossRefGoogle Scholar
  43. 43.
    Schmitz PJ, Usman RK, Peters CR, Graham CW, McCabe RW (1993) Appl Surf Sci 72:181–187CrossRefGoogle Scholar
  44. 44.
    Martnez-Arias A, Fernandez-Garca M, Ballesteros V, Salamanca LN, Conesa JC, Otero C, Soria J (1999) Langmuir 15:4796–4802CrossRefGoogle Scholar
  45. 45.
    Paparazzo E, Ingo GM, Zacchetti NJ (1991) J Vac Sci Technol A 9:1416–1420CrossRefGoogle Scholar
  46. 46.
    Praline G, Koel BE, Hance RL, Lee H-I, White JM (1980) J Electron Spectrosc Relat Phenom 21:17–30CrossRefGoogle Scholar
  47. 47.
    Pfau A, Schierbaum KD (1994) Surf Sci 321:71–80CrossRefGoogle Scholar
  48. 48.
    Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R (1998) J Electron Spectrosc Relat Phenom 88:951–956CrossRefGoogle Scholar
  49. 49.
    Briggs D, Seah MP (1990) Practical surface analysis, auger and X-ray photoelectron spectroscopy, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  50. 50.
    Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) Catal Today 77:407–417CrossRefGoogle Scholar
  51. 51.
    Assmann J, Narkhede V, Khodeir L, Loffler E, Hinrichsen O, Birkner A, Over H, Muhler M (2004) J Phys Chem B 108:14634–14642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Inorganic and Physical Chemistry DivisionIndian Institute of Chemical Technology (IICT)HyderabadIndia
  2. 2.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia
  3. 3.Department of Ceramics and Glass Engineering, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations