Catalysis Letters

, Volume 129, Issue 3–4, pp 400–403 | Cite as

Selective Dissociation of O3 and Adsorption of CO on Various Au Single Crystal Surfaces

  • I. Nakamura
  • A. Takahashi
  • T. Fujitani


The O3 dissociation and CO adsorption on various gold single crystal surfaces were investigated using X-ray photoelectron spectroscopy, temperature-programmed desorption, and polarization modulation infrared reflection absorption spectroscopy (PM-IRAS). Dissociation of O3 proceeded on the Au(111) surface at 323 K, whereas no O3 dissociation occurs on the Au(100) surface, indicating that the O3 dissociation on gold strongly depends on the structure of the gold surface. PM-IRA peaks of CO adsorbed on Au(111) and Au(100) were observed around 2,080 cm−1 at CO pressures above 0.5 Torr at 273 K. On the other hand, the peak of CO adsorbed on step sites was observed at 2,117 cm−1 above 0.01 Torr for Au(311). Thus, CO adsorbed preferentially onto the step sites of the gold surface.


Gold single crystal O3 Dissociation CO Adsorption Step sites Structure sensitivity 



This work was supported by the Japan Science and Technology Agency, JST, CREST.


  1. 1.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  2. 2.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  3. 3.
    Chen MS, Goodman DW (2004) Science 306:252CrossRefGoogle Scholar
  4. 4.
    Lemire C, Meyer R, Shaikhutdinov SK, Freund HJ (2004) Surf Sci 552:27CrossRefGoogle Scholar
  5. 5.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232CrossRefGoogle Scholar
  6. 6.
    Remediakis IN, Lopez N, Nørskov JK (2005) Appl Catal A 291:13CrossRefGoogle Scholar
  7. 7.
    Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403CrossRefGoogle Scholar
  8. 8.
    Chen M, Cai Y, Yan Z, Goodman DW (2006) J Am Chem Soc 128:6341CrossRefGoogle Scholar
  9. 9.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113CrossRefGoogle Scholar
  10. 10.
    Grunwaldt JD, Baiker A (1999) J Phys Chem B 103:1002CrossRefGoogle Scholar
  11. 11.
    Canning NDS, Outka D, Madix RJ (1984) Surf Sci 141:240CrossRefGoogle Scholar
  12. 12.
    Sault AG, Madix RJ, Campbell CT (1986) Surf Sci 169:347CrossRefGoogle Scholar
  13. 13.
    Saliba N, Parker DH, Koel BE (1998) Surf Sci 410:270CrossRefGoogle Scholar
  14. 14.
    Jugnet Y, Cadete Santos Aires FJ, Deranlot C, Piccolo L, Bertolini JC (2002) Surf Sci 521:L639CrossRefGoogle Scholar
  15. 15.
    Piccolo L, Loffreda D, Cadete Santos Aires FJ, Deranlot C, Jugnet Y, Sautet P, Bertolini JC (2004) Surf Sci 566–568:995CrossRefGoogle Scholar
  16. 16.
    Nakamura I, Hamada H, Fujitani T (2003) Surf Sci 544:45CrossRefGoogle Scholar
  17. 17.
    Davis KA, Goodman DW (2000) J Phys Chem B 104:8557CrossRefGoogle Scholar
  18. 18.
    Liu ZP, Hu P, Alavi A (2002) J Am Chem Soc 124:14770CrossRefGoogle Scholar
  19. 19.
    Chevrier J, Huang L, Zeppenfeld P, Comsa G (1996) Surf Sci 355:1CrossRefGoogle Scholar
  20. 20.
    Jong AM, Niemantsverdriet JW (1994) J Chem Phys 101:10126CrossRefGoogle Scholar
  21. 21.
    Fujitani T, Nakamura I, Takahashi A, Haneda M, Hamada H (2008) J Catal 253:139CrossRefGoogle Scholar
  22. 22.
    Ruggiero C, Hollins P (1996) J Chem Soc Faraday Trans 92:4829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Research Institute for Innovation in Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba, IbarakiJapan

Personalised recommendations