Catalysis Letters

, Volume 130, Issue 1–2, pp 137–146 | Cite as

Catalytic Behaviors of Amorphous Co-B Catalysts in Hydroformylation of 1-Octene



An amorphous Co-B catalyst was prepared by chemical reduction method and characterized by isothermal N2 adsorption/desorption, XRD, ICP-AES and HR-TEM. The catalytic activity of the Co-B catalyst in the hydroformylation of 1-octene was evaluated in a 100 mL stainless autoclave. Fresh amorphous Co-B catalyst showed a relatively high activity in the hydroformylation of 1-octene. The thermal stability of fresh Co-B catalyst was also examined. When fresh Co-B catalyst was thermally treated in N2 or H2 atmosphere at 200–500 °C for 2 h, the specific surface area and the catalytic activity of the Co-B catalyst decreased. When Co-B was supported on SiO2, the activity of the catalyst increased obviously. Compared with conventional supported Co/SiO2 catalyst, Co-B/SiO2 showed much higher activity than Co/SiO2. The influences of solvents and reaction conditions on the catalytic activity of the amorphous Co-B catalyst were also studied. The recycle test of the amorphous Co-B catalyst was done.


Hydroformylation 1-Octene Nonyl aldehyde Amorphous Co-B 



This work is supported by the National Natural Science Foundation of China (20373031) and the Analytical Foundation of Tsinghua University, China.


  1. 1.
    Ungvary F (1997) Coord Chem Rev 167:233Google Scholar
  2. 2.
    Fell B (1998) Tenside Surfactants Detergents 35(5):326Google Scholar
  3. 3.
    Paulik FE (1972) Catal Rev 6:49CrossRefGoogle Scholar
  4. 4.
    Beller M, Cornils B, Frohning CD, Kohlpaintner CW (1995) J Mol Catal A 104:17CrossRefGoogle Scholar
  5. 5.
    Dieguez M, Pamies O, Claver C (2004) Tetrahedron Asymmetr 15(14):2113CrossRefGoogle Scholar
  6. 6.
    Klingler RJ, Chen MJ, Rathke JW, Kramarz KW (2007) Organometallics 26(2):352CrossRefGoogle Scholar
  7. 7.
    Lin Q, Jiang WD, Fu HY, Chen H, Li XJ (2007) Appl Catal A 328(1):83CrossRefGoogle Scholar
  8. 8.
    Riisager A, Eriksen KM, Hjortkjaer J, Fehrmann R (2003) J Mol Catal A 193(1–2):259Google Scholar
  9. 9.
    Fu HY, Li M, Chen H, Li XJ (2006) J Mol Catal A 259(1–2):156Google Scholar
  10. 10.
    Fierro JLG, Merchan MD, Rojas S, Terreros P (2001) J Mol Catal A 166(2):255CrossRefGoogle Scholar
  11. 11.
    Kainulainen TA, Nieme MK, Krause AOI (1997) J Mol Catal A 122:39CrossRefGoogle Scholar
  12. 12.
    Kainulainen TA, Niemela MK, Krause AOI (1999) J Mol Catal A 140:173CrossRefGoogle Scholar
  13. 13.
    Li B, Li X, Asami K, Fujimoto K (2003) Energy Fuels 17:810CrossRefGoogle Scholar
  14. 14.
    Sordelli L, Guidotti M, Andreatta D, Vlaic G, Psaro R (2003) J Mol Catal A 204–205:509Google Scholar
  15. 15.
    Zhang Y, Nagasaka K, Qiu X, Tsubaki N (2004) Appl Catal A 276:103CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Nagasaka K, Qiu X, Tsubaki N (2005) Catal Today 104:48CrossRefGoogle Scholar
  17. 17.
    Zhang H, Qiu J, Liang C, Li Z, Wang X, Wang Y, Feng Z, Li C (2005) Catal Lett 101:211CrossRefGoogle Scholar
  18. 18.
    Zhu H, Ding Y, Yan L, He D, Wang T, Chen W, Lin L (2004) Chinese J Catal 25(8):653Google Scholar
  19. 19.
    Chen YZ, Liaw BJ, Chiang SJ (2005) Appl Catal A 284:97CrossRefGoogle Scholar
  20. 20.
    Chiang SJ, Yang CH, Chen YZ, Liaw BJ (2007) Appl Catal A 326(2):180CrossRefGoogle Scholar
  21. 21.
    Ma Y, Li W, Zhang M, Zhou Y, Tao K (2003) Appl Catal A 243(2):215CrossRefGoogle Scholar
  22. 22.
    Ge S, Wu Z, Zhang M, Li W, Tao K (2006) Ind Eng Chem Res 45:2229CrossRefGoogle Scholar
  23. 23.
    Wu C, Wu F, Bai Y, Yi BL, Zhang HM (2005) Mater Lett 59:1748CrossRefGoogle Scholar
  24. 24.
    Wonterghem JV, Morup S, Koch CJW, Charles SW, Wells S (1986) Nature 322:622CrossRefGoogle Scholar
  25. 25.
    Zong BN (2007) Catal Surv Asia 11:87CrossRefGoogle Scholar
  26. 26.
    Ma ZY, Zhang LX, Chen RZ, Xing WH, Xu NP (2008) Chem Eng J 138:517CrossRefGoogle Scholar
  27. 27.
    Jiang Z, Yang HW, Wei Z, Xie Z, Zhong WJ, Wei SQ (2005) Appl Catal A 279:165CrossRefGoogle Scholar
  28. 28.
    Falbe J (1980) New synthesis with carbon monoxide. Springer, New YorkGoogle Scholar
  29. 29.
    He DH, Pang DC, Chen Y, Wang TE, Liu Y, Liu JY, Zhu QM (2001) J Mol Catal A 174:21CrossRefGoogle Scholar
  30. 30.
    Brewester EAV, Pruett RL (1977) UCC company, US Patent 4247486Google Scholar
  31. 31.
    Reichardt C (1990) Solvents and solvent effects in organic chemistry. VCH, WeinheimGoogle Scholar
  32. 32.
    Massick SM, Bulttner T, Ford PC (2003) Inorg Chem 42(2):575CrossRefGoogle Scholar
  33. 33.
    Goh SK, Marynick DS (2002) Organometallics 21:2262CrossRefGoogle Scholar
  34. 34.
    Suvanto S, Hirva P, Pakkanen TA (2000) Surf Sci 465:277CrossRefGoogle Scholar
  35. 35.
    Piacenti F, Calderazzo F, Bianchi M, Rosi L, Frediani P (1997) Organometallics 16:4235CrossRefGoogle Scholar
  36. 36.
    Moroz BL, Moudrakovski IL, Likholobov VA (1996) J Mol Catal A 112:217CrossRefGoogle Scholar
  37. 37.
    Usami S, Nishimura K, Koyama T, Fukushi S (1969) Bull Chem Soc Jpn 2:2966CrossRefGoogle Scholar
  38. 38.
    Cornils B, Herrmann WA (1996) Applied homogeneous catalysis with organometallic compounds. VCH, WeinheimCrossRefGoogle Scholar
  39. 39.
    Abboud JLM, Notario R (1999) Pure Appl Chem 71:645CrossRefGoogle Scholar
  40. 40.
    Stark A, Ajam M, Green M, Raubenheimer HG, Ranwell A, Ondruschka B (2006) Adv Synth Catal 348:1934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Institute of Chemical DefenceBeijingChina

Personalised recommendations