Advertisement

Catalysis Letters

, Volume 134, Issue 3–4, pp 210–216 | Cite as

High Catalytic Activity in CO Oxidation over MnO x Nanocrystals

  • Viacheslav Iablokov
  • Krisztina Frey
  • Olga Geszti
  • Norbert Kruse
Article

Abstract

Manganese oxides of various stoichiometry were prepared via Mn-oxalate precipitation followed by thermal decomposition in the presence of oxygen. A non-stoichiometric manganese oxide, MnO x (x = 1.61…1.67) was obtained by annealing at 633 K and demonstrated superior CO oxidation activity, i.e. full CO conversion at room temperature and below. The activity gradually decreased with time-on-stream of the reactants but could be easily recovered by heating at 633 K in the presence of oxygen. CO oxidation over MnO x in the absence of oxygen proved to be possible with reduced rates and demonstrated a Mars—van Krevelen—type mechanism to be in operation. A TEM structural analysis showed the MnO x phase to form microrods with large aspect ratio which broke up into nanocrystalline manganese oxide (MnO x ) particles with diameters below 3 nm and a BET specific surface area of 525 m2/g. Annealing at 798 K rather than 633 K produced well crystalline Mn2O3 which showed lower CO oxidation activity, i.e. 100% CO conversion at 335 K. The catalytic performance in CO oxidation of various Mn-oxides either studied in this work or elsewhere was compared on the basis of specific reaction rates.

Keywords

Manganese oxides Microrods Nanocrystals CO oxidation Oxalate precipitation 

Notes

Acknowledgments

V. Iablokov gratefully acknowledges PhD. financial support by “ARC” (Communauté Française de Belgique). K Frey has been awarded a grant for short-term post-doctoral research at the ULB which is likewise acknowledged. We also acknowledge the technical help of I.E. Sajó for providing XRD characterisation. We are also grateful to the Hungarian Science and Research Fund OTKA grant No. NNF 78837.

Supplementary material

10562_2009_244_MOESM1_ESM.doc (38 kb)
MOESM1 (DOC 37 kb)

References

  1. 1.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175CrossRefGoogle Scholar
  2. 2.
    Dubois LH, Hansma PK, Somorjai GA (1980) J Catal 65:318CrossRefGoogle Scholar
  3. 3.
    Renzas JR, Zhang Y, Huang W, Somorjai GA (2009) Cat Lett 132:317CrossRefGoogle Scholar
  4. 4.
    Klier K, Kuchynka K (1966) J Catal 6:62CrossRefGoogle Scholar
  5. 5.
    Kanungo SB (1979) J Catal 58:419CrossRefGoogle Scholar
  6. 6.
    Luo J, Zhang Q, Garcia-Martinez J, Suib SL (2008) J Am Chem Soc 130:3198CrossRefGoogle Scholar
  7. 7.
    Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han Y-F (2008) Catal Today 131:477CrossRefGoogle Scholar
  8. 8.
    Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Nature 458:746CrossRefGoogle Scholar
  9. 9.
    Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) J Catal 211:387Google Scholar
  10. 10.
    Frennet A, Hubert C, Ghenne E, Chitry V, Kruse N (2000) Proc 12th Int Congr Catal-Stud Surf Sci Catal, Granada, Spain; Elsevier: Amsterdam 130:3699Google Scholar
  11. 11.
    Bundhoo A, Schweicher J, Frennet A, Kruse N (2009) J Phys Chem C 113:10731CrossRefGoogle Scholar
  12. 12.
    Frey K, Iablokov V, Melaet G, Guczi L, Kruse N (2008) Catal Lett 124:74CrossRefGoogle Scholar
  13. 13.
    Frennet A, Chitry V, Kruse N (2002) Appl Catal A Gen 229:273CrossRefGoogle Scholar
  14. 14.
    Dollimore D (1987) Thermochim Acta 117:331CrossRefGoogle Scholar
  15. 15.
    Frennet A, de Bocamé TV, Bastin J-M, Kruse N (2005) J Phys Chem B 109:2350CrossRefGoogle Scholar
  16. 16.
    Lethbridge ZAD, Congreve AF, Esslemont E, Slawin AMZ, Lightfoot P (2003) J. Solid State Chem 172:212CrossRefGoogle Scholar
  17. 17.
    Wu W-Y, Song Y, Li Y-Z, You X-Z (2005) Inorg Chem Commun 8:732CrossRefGoogle Scholar
  18. 18.
    Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK (2004) J Mater Chem 14:3406CrossRefGoogle Scholar
  19. 19.
    Zaki MI, Nohman AKH, Kappenstein C, Wahdan TM (1995) Mater Chem 5:1081CrossRefGoogle Scholar
  20. 20.
    Mohamed MA, Galwey AK, Halawy SA (2005) Thermochim Acta 429:57CrossRefGoogle Scholar
  21. 21.
    Duval C (1963) Inorganic thermogravimetric analysis. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Robin J (1953) Bull Soc Chim Fr 56:1078Google Scholar
  23. 23.
    Dollimore D, Dollimore J, Little J (1969) J Chem Soc A 8:2946CrossRefGoogle Scholar
  24. 24.
    Donkova B, Mehandjiev D (2004) Thermochim Acta 421:141CrossRefGoogle Scholar
  25. 25.
    Nohman AKH, Ismail HM, Hussein GAM (1995) J Analytical Appl Pyrol 34:265CrossRefGoogle Scholar
  26. 26.
    Yang Z, Zhang Y, Zhang W, Wang X, Qian Y, Wen X, Yang S (2006) J Solid State Chem 179:679CrossRefGoogle Scholar
  27. 27.
    Barakat NAM, Park SJ, Khil MS, Kim HY (2009) Mat Sci Eng B 162:205CrossRefGoogle Scholar
  28. 28.
    Davar F, Mohandes F, Salavati-Niasari M (2009) Inorg Chim Acta 362:3663CrossRefGoogle Scholar
  29. 29.
    Kantcheva M, Kucukkal MU, Suzer S (2000) J Catal 190:144CrossRefGoogle Scholar
  30. 30.
    Craciun R, Nentwick B, Hadjiivanov K, Knozinger H (2003) Appl Catal A Gen 243:67CrossRefGoogle Scholar
  31. 31.
    Imamura S, Sawada H, Uemura K, Ishida S (1988) J Catal 109:198CrossRefGoogle Scholar
  32. 32.
    Lin R, Liu W-P, Zhong Y-J, Luo M-F (2001) Appl Catal A Gen 220:165CrossRefGoogle Scholar
  33. 33.
    Xu R, Wang X, Wang D, Zhou K, Li Y (2006) J Catal 237:426CrossRefGoogle Scholar
  34. 34.
    Wang LC, Huang X-S, Liu Q, Liu Y-M, Cao Y, He H-Y, Fan K-N, Zhuang J-H (2008) J Catal 259:66CrossRefGoogle Scholar
  35. 35.
    Hu R, Xie L, Ding S, Hou J, Cheng Y, Wang D (2008) Catal Today 131:513CrossRefGoogle Scholar
  36. 36.
    Gac W (2007) Appl Catal B Environ 75:107CrossRefGoogle Scholar
  37. 37.
    Ivanova ND, Ivanov SV, Boldyrev EI, Sokol’skii GV, Makeeva IS (2002) Russ J Appl Chem 75:1420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Viacheslav Iablokov
    • 1
  • Krisztina Frey
    • 1
    • 2
  • Olga Geszti
    • 1
    • 3
  • Norbert Kruse
    • 1
  1. 1.Chemical Physics of MaterialsUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Department of Surface Chemistry and CatalysisInstitute of IsotopesBudapestHungary
  3. 3.Research Institute for Technical Physics and Materials ScienceBudapestHungary

Personalised recommendations