Advertisement

Catalysis Letters

, Volume 133, Issue 3–4, pp 321–327 | Cite as

Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene over Sulfated ZnFe2O4 Catalyst

  • Howon Lee
  • Ji Chul Jung
  • In Kyu Song
Article

Abstract

Oxidative dehydrogenation of n-butene to 1,3-butadiene over sulfated ZnFe2O4 catalyst was carried out in a continuous flow fixed-bed reactor. The effect of sulfation on the catalytic performance of ZnFe2O4 was investigated. Sulfated ZnFe2O4 catalyst showed a better catalytic performance than ZnFe2O4 catalyst in the oxidative dehydrogenation of n-butene. Acid–base property of sulfated ZnFe2O4 catalyst was measured by TPD experiment, with an aim of correlating the catalytic performance with the surface acid–base property of the catalyst. It was revealed that the catalytic performance of sulfated ZnFe2O4 catalyst was closely related to the surface weak-acid density of the catalyst. The enhanced acidity of sulfated ZnFe2O4 catalyst was responsible for its high catalytic performance in the oxidative dehydrogenation of n-butene. Thus, sulfation served as an efficient method for improving catalytic performance of ZnFe2O4 in the oxidative dehydrogenation of n-butene.

Keywords

Zinc ferrite n-Butene 1,3-Butadiene Oxidative dehydrogenation Sulfated zinc ferrite 

Notes

Acknowledgments

The authors acknowledge supports from Ministry of Knowledge Economy, Korea.

References

  1. 1.
    Jung JC, Lee H, Park S, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Korean J Chem Eng 25:1316–1321CrossRefGoogle Scholar
  2. 2.
    Oh SC, Lee HP, Kim HT, Yoo KO (1999) Korean J Chem Eng 16:543–547CrossRefGoogle Scholar
  3. 3.
    Jung JC, Lee H, Seo JG, Park S, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2009) Catal Today 141:325–329CrossRefGoogle Scholar
  4. 4.
    Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2007) J Mol Catal A Chem 271:261–265CrossRefGoogle Scholar
  5. 5.
    Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Commun 9:447–452CrossRefGoogle Scholar
  6. 6.
    Jung JC, Lee H, Song IK (2009) Catal Lett 128:243–247CrossRefGoogle Scholar
  7. 7.
    Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Lett 123:239–245CrossRefGoogle Scholar
  8. 8.
    López Nieto JM, Concepción P, Dejoz A, Knözinger H, Melo F, Vázquez MI (2000) J Catal 189:147–157CrossRefGoogle Scholar
  9. 9.
    Tiwari PN, Alkhazov TG, Adzamov KU, Khanmamedova AK (1989) J Catal 120:278–281CrossRefGoogle Scholar
  10. 10.
    Rennard RJ, Kehl WL (1971) J Catal 21:282–293CrossRefGoogle Scholar
  11. 11.
    Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2009) Korean J Chem Eng 26:994–998CrossRefGoogle Scholar
  12. 12.
    Rennard RJ, Innes RA, Swift HE (1973) J Catal 30:128–138CrossRefGoogle Scholar
  13. 13.
    Toledo-Antonio JA, Bosch P, Valenzuela MA, Montoya A, Nava N (1997) J Mol Catal A Chem 125:53–62CrossRefGoogle Scholar
  14. 14.
    Toledo-Antonio JA, Nava N, Martínez M, Bokhimi X (2002) Appl Catal A Gen 234:137–144CrossRefGoogle Scholar
  15. 15.
    Kung HH, Kundalkar B, Kung MC, Cheng WH (1980) J Phys Chem 84:382–388CrossRefGoogle Scholar
  16. 16.
    Xu WQ, Yin YG, Li GY, Chen S (1992) Appl Catal A Gen 89:131–142CrossRefGoogle Scholar
  17. 17.
    Qiu FY, Weng L-T, Sham E, Ruiz P, Delmon B (1989) Appl Catal 51:235–253CrossRefGoogle Scholar
  18. 18.
    Finocchio E, Busca G, Ramis G, Lorenzelli V (1997) Stud Surf Sci Catal 110:989–998CrossRefGoogle Scholar
  19. 19.
    Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2009) Catal Lett 131:344–349CrossRefGoogle Scholar
  20. 20.
    Massoth FE, Scarpiello DA (1971) J Catal 21:294–302CrossRefGoogle Scholar
  21. 21.
    Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Commun 9:1137–1142CrossRefGoogle Scholar
  22. 22.
    Kung HH (1986) Ind Eng Chem Prod Res Dev 25:171–178CrossRefGoogle Scholar
  23. 23.
    Barbara GS (2002) Top Catal 21:35–46CrossRefGoogle Scholar
  24. 24.
    Amendariz H, Toledo JA, Aguilar-Rios G, Valenzuela MA, Salas P, Cabral A, Jimenez H, Schifter I (1994) J Mol Catal 92:325–332CrossRefGoogle Scholar
  25. 25.
    Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Lett 122:281–286CrossRefGoogle Scholar
  26. 26.
    Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2008) Catal Lett 124:364–368CrossRefGoogle Scholar
  27. 27.
    Li X, Nagaoka K, Simon LJ, Olindo R, Lercher JA, Hofmann A, Sauer J (2005) J Am Chem Soc 127:16159–16166CrossRefGoogle Scholar
  28. 28.
    Yamaguchi T, Jin T, Tanabe K (1986) J Phys Chem 90:3148–3152CrossRefGoogle Scholar
  29. 29.
    Arata K (1990) Adv Catal 37:165–211CrossRefGoogle Scholar
  30. 30.
    Ramankutty CG, Sugunan S (2001) Appl Catal A Gen 218:39–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea

Personalised recommendations