Advertisement

Catalysis Letters

, 133:280 | Cite as

Synthesis of Diphenyl Carbonate from Phenol and Carbon Dioxide in the Presence of Carbon Tetrachloride and Zinc Chloride

  • Guozhi Fan
  • Shin-ichiro Fujita
  • Bing Zou
  • Masahiro Nishiura
  • Xiangchun Meng
  • Masahiko Arai
Article

Abstract

Diphenyl carbonate (DPC) was synthesized from phenol and dense phase CO2 in the presence of CCl4 and K2CO3 using different catalysts of ZnCl2, ZnBr2, Lewis acid ionic liquids including 1-butyl-3-methylimidazolium chloride (BMIMCl) and bromide (BMIMBr). It was found that K2CO3 was not required, ZnCl2 and ZnBr2 were similar in the catalytic performance, and the use of BMIMCl and BMIMBr was not effective for the production of DPC. For the reactions with ZnCl2 in CCl4, the effects of such reaction variables as temperature, CO2 pressure, the amount of ZnCl2, and the volume of CCl4 were studied in detail. It was shown that the pressure was less influential while a larger amount of ZnCl2, a smaller volume of CCl4, and a low temperature of around 100°C were beneficial for the synthesis of DPC. On the basis of the results obtained, possible reaction mechanisms were discussed.

Keywords

Diphenyl carbonate Phenol Carbon dioxide Carbon tetrachloride Zinc halide 

Notes

Acknowledgments

This work was supported by the Research Project of Hubei Provincial Department of Education of China (Q20091810).

References

  1. 1.
    Gong J, Ma X, Wang S (2007) Appl Catal A Gen 316:1CrossRefGoogle Scholar
  2. 2.
    Hatanaka I, Mitsuyasu N, Yin G, Fujiwara Y, Kitamura T, Kusakabe K, Yamaji T (2003) J Organomet Chem 674:96CrossRefGoogle Scholar
  3. 3.
    Zhao X, Sun N, Wang S, Li F, Wang Y (2008) Ind Eng Chem Res 47:5298CrossRefGoogle Scholar
  4. 4.
    Rivetti F, Paludetto R, Romano U (1997) EP Patent 785:184Google Scholar
  5. 5.
    Inaba M, Sawa K, Tanaka T (1997) JP Patent 09(110):805Google Scholar
  6. 6.
    Yasuda H, Maki N, Choi JC, Sakakura T (2003) J Organomet Chem 682:66CrossRefGoogle Scholar
  7. 7.
    Yasuda H, Watarai K, Choi JC, Sakakura T (2005) J Mol Catal A Chem 236:149CrossRefGoogle Scholar
  8. 8.
    Tundo P, Trotta F, Molaglio G, Ligorati F (1988) Ind Eng Chem Res 27:1565CrossRefGoogle Scholar
  9. 9.
    Fan GZ, Li T, Li GX (2006) Appl Organomet Chem 20:656CrossRefGoogle Scholar
  10. 10.
    Fan GZ, Huang J, Li ZQ, Li T, Li GX (2007) J Mol Catal A Chem 267:34CrossRefGoogle Scholar
  11. 11.
    Omae I (2006) Catal Today 115:33CrossRefGoogle Scholar
  12. 12.
    Schilt MV, Kemmere M, Keurentjes A (2006) Catal Today 115:162CrossRefGoogle Scholar
  13. 13.
    Dinda S, Patwardhan AV, Panda SR, Pradhan NC (2008) Chem Eng J 136:349CrossRefGoogle Scholar
  14. 14.
    Kawanami H, Sasaki A, Matsui K, Ikushima Y (2003) Chem Commun 896Google Scholar
  15. 15.
    Sun J, Fujita S, Zhao F, Hasegawa M, Arai M (2005) J Catal 230:398CrossRefGoogle Scholar
  16. 16.
    Sun J, Fujita S, Zhao F, Arai M (2005) Appl Catal A Gen 287:221CrossRefGoogle Scholar
  17. 17.
    Bhanage BM, Fujita S, Ikushima Y, Arai M (2003) Green Chem 5:340CrossRefGoogle Scholar
  18. 18.
    Yasuda H, He LN, Sakakura T, Hu CW (2005) J Catal 233:119CrossRefGoogle Scholar
  19. 19.
    Ulusoy M, Cetinkaya E, Cetinkaya B (2009) Appl Organomet Chem 23:68CrossRefGoogle Scholar
  20. 20.
    Tian JS, Miao CX, Wang JQ, Cai F, Du Y, Zhao Y, He LN (2007) Green Chem 9:566CrossRefGoogle Scholar
  21. 21.
    Bhanage BM, Fujita S, He Y, Ikushima Y, Shirai M, Torii K, Arai M (2002) Catal Lett 83:137CrossRefGoogle Scholar
  22. 22.
    Du ZP, Wang Y, Wang GY (2005) Nat Gas Chem Ind 30:21Google Scholar
  23. 23.
    Naeimi H, Moradi L (2006) J Mol Catal A Chem 256:242CrossRefGoogle Scholar
  24. 24.
    Olah GA, Török B, Joschek JP, Bucsi I, Esteves PM, Rasul G, Prakash GKS (2002) J Am Chem Soc 124:11379CrossRefGoogle Scholar
  25. 25.
    Iijim T, Yamaguchi T (2008) Appl Catal A Gen 345:12CrossRefGoogle Scholar
  26. 26.
    Iijima T, Yamaguchi T (2008) J Mol Catal A Chem 295:52CrossRefGoogle Scholar
  27. 27.
    Shi F, Deng Y, Sima T, Peng J, Gu Y, Qiao B (2003) Angew Chem Int Ed 42:3257CrossRefGoogle Scholar
  28. 28.
    Li Z, Qin Z (2007) J Mol Catal A Chem 264:255CrossRefGoogle Scholar
  29. 29.
    Su K, Li Z, Cheng B, Ren Y (2008) Catal Commun 9:1666CrossRefGoogle Scholar
  30. 30.
    Li Z, Qin Z, Zhu H, Wang J (2006) Chem Lett 35:784CrossRefGoogle Scholar
  31. 31.
    Schmittinger P (2000) Chlorine, principles and industrial practice. Wiley VCH, WeinheimGoogle Scholar
  32. 32.
    Jessop PJ, Ikariya T, Noyori R (1999) Chem Rev 99:475CrossRefGoogle Scholar
  33. 33.
    Hobbs HR, Thomas NR (2007) Chem Rev 107:2786CrossRefGoogle Scholar
  34. 34.
    Arai M, Fujita S, Shirai M (2009) J Supercrit Fluid 47:351CrossRefGoogle Scholar
  35. 35.
    Zhao F, Fujita S, Akihara S, Arai M (2005) J Phys Chem A 109:4419CrossRefGoogle Scholar
  36. 36.
    Lindsey S, Jeskey H (1957) Chem Rev 57:583CrossRefGoogle Scholar
  37. 37.
    Li C, Liu W, Zhao Z (2007) Catal Commun 81:834Google Scholar
  38. 38.
    Alexander MV, Khandekar AC, Samant AD (2004) J Mol Catal A Chem 223:75CrossRefGoogle Scholar
  39. 39.
    Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Chem Commun 2010Google Scholar
  40. 40.
    Wessely F, Benedict K, Benger H, Friedrich G, Prilinger F (1950) Monatsh 81:1071CrossRefGoogle Scholar
  41. 41.
    Kosugi Y, Takahashi K, Imaoka Y (1999) J Chem Res 114Google Scholar
  42. 42.
    Kosugi Y, Imaoka Y, Gotoh F, Rahim MA, Matsui Y, Sakanishi K (2003) Org Biomol Chem 1:817CrossRefGoogle Scholar
  43. 43.
    Clifford AA, Pople K, Gaskill WJ, Bartle KD, Rayner CM (1998) J Chem Soc Faraday Trans 94:1451CrossRefGoogle Scholar
  44. 44.
    Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B (2009) Green Chem 11:1031CrossRefGoogle Scholar
  45. 45.
    Zhao F, Zhang R, Chatterjee M, Ikushima M, Arai M (2004) Adv Synth Catal 346:661CrossRefGoogle Scholar
  46. 46.
    Chatterjee M, Ikushima Y, Zhao F (2002) New J Chem 27:27Google Scholar
  47. 47.
    Meng X, Cheng H, Akiyama Y, Hao Y, Qiao W, Yu Y, Zhao F, Fujita S, Arai M (2009) J Catal 264:1CrossRefGoogle Scholar
  48. 48.
    Tang QL, Hong QJ, Liu ZP (2009) J Catal 263:114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Guozhi Fan
    • 1
    • 2
  • Shin-ichiro Fujita
    • 2
  • Bing Zou
    • 1
  • Masahiro Nishiura
    • 2
  • Xiangchun Meng
    • 2
    • 3
  • Masahiko Arai
    • 2
  1. 1.School of Chemical and Environmental EngineeringWuhan Polytechnic UniversityWuhanChina
  2. 2.Division of Chemical Process Engineering, Graduate School of EngineeringHokkaido UniversitySapporoJapan
  3. 3.School of Chemical EngineeringChangchun University of TechnologyChangchunChina

Personalised recommendations