Catalysis Letters

, Volume 136, Issue 1–2, pp 126–133 | Cite as

Synthesis, Characterization and Hydroisomerization Performance of SAPO-11 Molecular Sieves with Caverns by Polymer Spheres



Silicoaluminophosphates SAPO-11 molecular sieves with caverns were synthesized using polystyrene (PS) micro-spheres as template. The morphologies of the cavitary SAPO-11 molecular sieves exhibit spherical particles ranging 7–10 μm aggregated from cubic plate microcrystallites which just like the SAPO-11 molecular sieves synthesized with the conventional method, but some caverns of 500–1,200 nm pore size in diameter can be observed on the former material. The strength and distribution of the acid sites of the cavitary SAPO-11 are similar to that of the conventional SAPO-11, but the acid density is slightly low owing to the decreased crystallinity of the cavitary SAPO-11. The micropores size and mesopores size of the conventional SAPO-11 are centered at about 0.45 and 3.8 nm, respectively, while the cavitary SAPO-11 has, in addition to the micropores and mesopores, large mesopores ranging 5–30 nm and macropores ranging from about 100 to 1,200 nm, which were derived from the PS sphere template. Hydroisomerization of n-hexadecane was performed to investigate the catalytic performance of the cavitary SAPO-11. The result showed that, in comparison with the conventional SAPO-11, the cavitary SAPO-11 has high activity based on per active site and high selectivity, owing to the fast diffusion of the reactant and isomer products inside the catalyst.


SAPO-11 molecular sieves Polymer spheres Caverns Hydroisomerization n-Alkanes 



This research work was supported by the National Basic Research Program of China (Grant No: 2004CB217808).


  1. 1.
    Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) US Patent 4,440,871Google Scholar
  2. 2.
    Liu P, Chen J, Sun Y (2008) Micro Meso Mater 114:365CrossRefGoogle Scholar
  3. 3.
    Girgis MJ, Tsao YP (1996) Ind Eng Chem Res 35:386CrossRefGoogle Scholar
  4. 4.
    Campelo JM, Lafont F, Marinas JM (1998) Appl Catal A 170:139CrossRefGoogle Scholar
  5. 5.
    Park KC, Ihm SK (2000) Appl Catal A 203:201CrossRefGoogle Scholar
  6. 6.
    Cloaude MC, Martens JA (2000) J Catal 190:39CrossRefGoogle Scholar
  7. 7.
    Martens JA, Vanbutsele G, Jacobs PA (2001) Catal Today 65:111CrossRefGoogle Scholar
  8. 8.
    Mériaudeau P, Tuan VA, Sapaly G, Naccache C (1999) Catal Today 49:285CrossRefGoogle Scholar
  9. 9.
    Nghiem VT, Sapaly G, Mériaudeau P (2001) Top Catal 14:131CrossRefGoogle Scholar
  10. 10.
    Meriaudeau P, Tuan VA, Nghiem VT, Lai SY, Hung LN, Caccache C (1997) J Catal 169:55CrossRefGoogle Scholar
  11. 11.
    Campelo JM, Lafont F, Marinas JM (1995) Zeolites 15:97CrossRefGoogle Scholar
  12. 12.
    Alfonzo M, Goldwasser J, López CM, Machado FJ, Matjushin M, Méndez B (1995) J Mol Catal A 98:35CrossRefGoogle Scholar
  13. 13.
    Wang ZM, Yan ZF (2001) Acta Pet Sin (Pet Process Sect) 17:76Google Scholar
  14. 14.
    Qi YP, Chen SL, Dong P, Xu KQ, Shen BJ (2006) J Fuel Chem Tech 34:685CrossRefGoogle Scholar
  15. 15.
    Liu LX, Dong P, Wang XD (2005) Chin Phys Lett 22:741CrossRefGoogle Scholar
  16. 16.
    Wang XD, Yi GY (2007) Chem J Chin Univ 28:1759Google Scholar
  17. 17.
    Zhang G, Yu Y, Chen X, Han Y, Di Y, Yang B, Xiao FS, Shen JC (2003) J Coll Inter Sci 263:461CrossRefGoogle Scholar
  18. 18.
    Wang XD, Dong P, Yi GY (2006) Acta Phys Sin 55:2092Google Scholar
  19. 19.
    Khaja Mastan S, Rama Rao KS, Sai Prasad PS, Kanta Rao P (1992) Adsorp Sci Technol 9:212Google Scholar
  20. 20.
    Dandy AJ, Nadiye-Tabbiruka MS (1975) Clays Clay Miner 23:428CrossRefGoogle Scholar
  21. 21.
    Mériaudeau P, Tuan VA, Lefebvre F, Nghiem VT, Naccache C (1998) Micro Meso Mater 22:435CrossRefGoogle Scholar
  22. 22.
    Wang XD (2006) Research on floating assembly of colloidal particles and preparation of macroporous catalytic materials. China University of Petroleum, Beijing, p 59Google Scholar
  23. 23.
    Zhang SZ, Chen SL, Dong P, Ji ZY, Zhao JY, Xu KQ (2007) Catal Lett 118:109CrossRefGoogle Scholar
  24. 24.
    Kinger G, Majda D, Vinek H (2002) Appl Catal A 225:301CrossRefGoogle Scholar
  25. 25.
    Höchtl M, Jentys A, Vinek H (2000) J Catal 190:419CrossRefGoogle Scholar
  26. 26.
    Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, New York, p 46Google Scholar
  27. 27.
    Martens JA, Jacobs PA, Weitkamp J (1986) Appl Catal 20:239CrossRefGoogle Scholar
  28. 28.
    Martens JA, Vanbutsele G, Jacobs PA, Denayer J, Ocakoglu R, Baron G, Muñoz Arroyo JA, Thybaut J, Marin GB (2001) Catal Today 65:111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil Processing, Chemical Engineering DepartmentChina University of PetroleumBeijingPeople’s Republic of China
  2. 2.Datang International Chemical Technology Research InstituteDatang International Power Generation Co., LtdBeijingPeople’s Republic of China

Personalised recommendations