Skip to main content
Log in

Synthesis, Characterization and Hydroisomerization Performance of SAPO-11 Molecular Sieves with Caverns by Polymer Spheres

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Silicoaluminophosphates SAPO-11 molecular sieves with caverns were synthesized using polystyrene (PS) micro-spheres as template. The morphologies of the cavitary SAPO-11 molecular sieves exhibit spherical particles ranging 7–10 μm aggregated from cubic plate microcrystallites which just like the SAPO-11 molecular sieves synthesized with the conventional method, but some caverns of 500–1,200 nm pore size in diameter can be observed on the former material. The strength and distribution of the acid sites of the cavitary SAPO-11 are similar to that of the conventional SAPO-11, but the acid density is slightly low owing to the decreased crystallinity of the cavitary SAPO-11. The micropores size and mesopores size of the conventional SAPO-11 are centered at about 0.45 and 3.8 nm, respectively, while the cavitary SAPO-11 has, in addition to the micropores and mesopores, large mesopores ranging 5–30 nm and macropores ranging from about 100 to 1,200 nm, which were derived from the PS sphere template. Hydroisomerization of n-hexadecane was performed to investigate the catalytic performance of the cavitary SAPO-11. The result showed that, in comparison with the conventional SAPO-11, the cavitary SAPO-11 has high activity based on per active site and high selectivity, owing to the fast diffusion of the reactant and isomer products inside the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) US Patent 4,440,871

  2. Liu P, Chen J, Sun Y (2008) Micro Meso Mater 114:365

    Article  CAS  Google Scholar 

  3. Girgis MJ, Tsao YP (1996) Ind Eng Chem Res 35:386

    Article  CAS  Google Scholar 

  4. Campelo JM, Lafont F, Marinas JM (1998) Appl Catal A 170:139

    Article  CAS  Google Scholar 

  5. Park KC, Ihm SK (2000) Appl Catal A 203:201

    Article  CAS  Google Scholar 

  6. Cloaude MC, Martens JA (2000) J Catal 190:39

    Article  Google Scholar 

  7. Martens JA, Vanbutsele G, Jacobs PA (2001) Catal Today 65:111

    Article  CAS  Google Scholar 

  8. Mériaudeau P, Tuan VA, Sapaly G, Naccache C (1999) Catal Today 49:285

    Article  Google Scholar 

  9. Nghiem VT, Sapaly G, Mériaudeau P (2001) Top Catal 14:131

    Article  Google Scholar 

  10. Meriaudeau P, Tuan VA, Nghiem VT, Lai SY, Hung LN, Caccache C (1997) J Catal 169:55

    Article  CAS  Google Scholar 

  11. Campelo JM, Lafont F, Marinas JM (1995) Zeolites 15:97

    Article  CAS  Google Scholar 

  12. Alfonzo M, Goldwasser J, López CM, Machado FJ, Matjushin M, Méndez B (1995) J Mol Catal A 98:35

    Article  CAS  Google Scholar 

  13. Wang ZM, Yan ZF (2001) Acta Pet Sin (Pet Process Sect) 17:76

    Google Scholar 

  14. Qi YP, Chen SL, Dong P, Xu KQ, Shen BJ (2006) J Fuel Chem Tech 34:685

    Article  CAS  Google Scholar 

  15. Liu LX, Dong P, Wang XD (2005) Chin Phys Lett 22:741

    Article  CAS  Google Scholar 

  16. Wang XD, Yi GY (2007) Chem J Chin Univ 28:1759

    CAS  Google Scholar 

  17. Zhang G, Yu Y, Chen X, Han Y, Di Y, Yang B, Xiao FS, Shen JC (2003) J Coll Inter Sci 263:461

    Article  Google Scholar 

  18. Wang XD, Dong P, Yi GY (2006) Acta Phys Sin 55:2092

    CAS  Google Scholar 

  19. Khaja Mastan S, Rama Rao KS, Sai Prasad PS, Kanta Rao P (1992) Adsorp Sci Technol 9:212

    Google Scholar 

  20. Dandy AJ, Nadiye-Tabbiruka MS (1975) Clays Clay Miner 23:428

    Article  CAS  Google Scholar 

  21. Mériaudeau P, Tuan VA, Lefebvre F, Nghiem VT, Naccache C (1998) Micro Meso Mater 22:435

    Article  Google Scholar 

  22. Wang XD (2006) Research on floating assembly of colloidal particles and preparation of macroporous catalytic materials. China University of Petroleum, Beijing, p 59

    Google Scholar 

  23. Zhang SZ, Chen SL, Dong P, Ji ZY, Zhao JY, Xu KQ (2007) Catal Lett 118:109

    Article  CAS  Google Scholar 

  24. Kinger G, Majda D, Vinek H (2002) Appl Catal A 225:301

    Article  CAS  Google Scholar 

  25. Höchtl M, Jentys A, Vinek H (2000) J Catal 190:419

    Article  Google Scholar 

  26. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, New York, p 46

    Google Scholar 

  27. Martens JA, Jacobs PA, Weitkamp J (1986) Appl Catal 20:239

    Article  CAS  Google Scholar 

  28. Martens JA, Vanbutsele G, Jacobs PA, Denayer J, Ocakoglu R, Baron G, Muñoz Arroyo JA, Thybaut J, Marin GB (2001) Catal Today 65:111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Basic Research Program of China (Grant No: 2004CB217808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Li Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Chen, SL. & Dong, P. Synthesis, Characterization and Hydroisomerization Performance of SAPO-11 Molecular Sieves with Caverns by Polymer Spheres. Catal Lett 136, 126–133 (2010). https://doi.org/10.1007/s10562-009-0186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0186-6

Keywords

Navigation