Advertisement

Catalysis Letters

, 132:410 | Cite as

Production of Middle Distillate Through Hydrocracking of Paraffin Wax Over NiMo/SiO2-Al2O3 Catalysts: Effect of Solvent in the Preparation of SiO2-Al2O3 by a Sol–Gel Method

  • Sunhwan Hwang
  • Joongwon Lee
  • Jeong Gil Seo
  • Dong Ryul Park
  • Min Hye Youn
  • Ji Chul Jung
  • Sang-Bong Lee
  • In Kyu Song
Article

Abstract

SiO2-Al2O3 supports were prepared by a sol–gel method in the presence of distilled water and ethanol, respectively (SiO2-Al2O3 supports were donated as H-SA and E-SA, respectively). NiMo/SiO2-Al2O3 catalysts (NiMo/H-SA and NiMo/E-SA) were then prepared by an impregnation method for use in the production of middle distillate (C10–C20) through hydrocracking of paraffin wax. The effect of solvent in the preparation of SiO2-Al2O3 support on the catalytic performance of NiMo/SiO2-Al2O3 catalyst was investigated. NiMo/H-SA catalyst showed a higher conversion of wax and a higher selectivity for middle distillate than NiMo/E-SA catalyst. The identity of solvent strongly affected the physical properties of H-SA and E-SA supports. High surface area of H-SA enhanced the dispersion of impregnated metal species, resulting in the increase of active sites of NiMo/H-SA catalyst. Large pore volume and large pore diameter of NiMo/H-SA catalyst played an important role in enhancing internal mass transfer during the reaction. Large acidity of NiMo/H-SA catalyst compared to NiMo/E-SA catalyst was responsible for high conversion of wax over NiMo/H-SA catalyst. The enhanced selectivity for middle distillate over NiMo/H-SA catalyst was attributed to abundant active sites for hydrogenation reaction.

Keywords

Hydrocracking Paraffin wax NiMo/SiO2-Al2O3 Middle distillate Sol–gel method 

Notes

Acknowledgments

The authors would like to acknowledge funding from the Korea Ministry of Knowledge Economy (MKE) through “Energy Technology Innovation Program”.

References

  1. 1.
    Li M, Wang J-q, Deng W-a, Que G-h (2007) J Fuel Chem Technol 35:558–562CrossRefGoogle Scholar
  2. 2.
    Pellegrini L, Bonomi S, Gamba S, Calemma V, Molinari D (2007) Chem Eng Sci 62:5013–5020CrossRefGoogle Scholar
  3. 3.
    Ali MA, Tatsumi T, Masuda T (2002) Appl Catal A Gen 233:77–90CrossRefGoogle Scholar
  4. 4.
    Alsobaai AM, Zakaria R, Hameed BH (2007) Fuel Process Technol 88:921–928CrossRefGoogle Scholar
  5. 5.
    Yang H, Fairbridge C, Hill J, Ring Z (2004) Catal Today 93–95:457–465CrossRefGoogle Scholar
  6. 6.
    Cho KM, Park S, Seo JG, Youn MH, Baeck S-H, Jun K-W, Chung JS, Song IK (2008) Appl Catal B Environ 83:195–201CrossRefGoogle Scholar
  7. 7.
    Robinson WRAM, van Veen JAR, de Beer VHJ, van Santen RA (1999) Fuel Process Technol 61:89–101CrossRefGoogle Scholar
  8. 8.
    Robinson WRAM, van Veen JAR, de Beer VHJ, van Santen RA (1999) Fuel Process Technol 61:103–116CrossRefGoogle Scholar
  9. 9.
    Fujikawa T, Idei K, Ebihara T, Mizuguchi H, Usui K (2000) Appl Catal A Gen 192:253–261CrossRefGoogle Scholar
  10. 10.
    Ancheyta-Juárez J, Aguilar-Rodríguez E, Salazar-Sotelo D, Marroquín-Sáncheza G, Quiroz-Sosa G, Leiva-Nuncio M (1999) Appl Catal A Gen 183:265–272CrossRefGoogle Scholar
  11. 11.
    Benazzi E, Leite L, Marchal-George N, Toulhoat H, Raybaud P (2003) J Catal 217:376–387Google Scholar
  12. 12.
    Leckel D (2009) Energy Fuel 23:2370–2375CrossRefGoogle Scholar
  13. 13.
    Fang K, Wei W, Ren J, Sun Y (2004) Catal Lett 93:235–242CrossRefGoogle Scholar
  14. 14.
    Mohanty S, Kunzru D, Saraf DN (1990) Fuel 69:1467–1473CrossRefGoogle Scholar
  15. 15.
    Rezgui Y, Guemini M (2005) Appl Catal A Gen 282:45–53CrossRefGoogle Scholar
  16. 16.
    Zhang S, Zhang Y, Tierney JW, Wender I (2001) Fuel Process Technol 69:59–71CrossRefGoogle Scholar
  17. 17.
    Alsobaai AM, Zakaria R, Hameed BH (2007) Chem Eng J 132:77–83CrossRefGoogle Scholar
  18. 18.
    Cho KM, Park S, Seo JG, Youn MH, Nam I, Baeck S-H, Chung JS, Jun K-W, Song IK (2009) Chem Eng J 146:307–314CrossRefGoogle Scholar
  19. 19.
    Calemma V, Peratello S, Perego C (2000) Appl Catal A Gen 190:207–218CrossRefGoogle Scholar
  20. 20.
    Sánchez-Minero F, Ramírez J, Gutiérrez-Alejandre A, Fernández-Vargas C, Torres-Mancera P, Cuevas-Garcia R (2008) Catal Today 133–135:267–276CrossRefGoogle Scholar
  21. 21.
    Hietala SL, Smith DM, Brinker CJ, Hurd AJ, Carim AH, Dando N (1990) J Am Ceram Soc 73:2815–2821CrossRefGoogle Scholar
  22. 22.
    Hwang S, Lee J, Park S, Park DR, Jung JC, Lee S-B, Song IK (2009) Catal Lett 129:163–169CrossRefGoogle Scholar
  23. 23.
    Klein LC (1985) Ann Rev Mater Sci 15:227–248CrossRefGoogle Scholar
  24. 24.
    Wang S, Liu H, Zhang L, Yao X (1995) Ferroelectrics Lett 19:89–94CrossRefGoogle Scholar
  25. 25.
    Carja G, Kameshima Y, Okada K (2008) Micropor Mesopor Mat 115:541–547CrossRefGoogle Scholar
  26. 26.
    Ahmed AE, Adam F (2007) Micropor Mesopor Mat 103:284–295CrossRefGoogle Scholar
  27. 27.
    Sheng Q, Cong Y, Yuan S, Zhang J, Anpo M (2006) Micropor Mesopor Mat 95:220–225CrossRefGoogle Scholar
  28. 28.
    Yoosuk B, Kim JH, Song C, Ngamcharussrivichai C, Prassassarakich P (2008) Catal Today 130:14–23CrossRefGoogle Scholar
  29. 29.
    Qu L, Zhang W, Kooyman PJ, Prins R (2003) J Catal 215:7–13CrossRefGoogle Scholar
  30. 30.
    Payen E, Hubaut R, Kasztelan S, Poulet O, Grimblot J (1994) J Catal 147:123–132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sunhwan Hwang
    • 1
  • Joongwon Lee
    • 1
  • Jeong Gil Seo
    • 1
  • Dong Ryul Park
    • 1
  • Min Hye Youn
    • 1
  • Ji Chul Jung
    • 1
  • Sang-Bong Lee
    • 2
  • In Kyu Song
    • 1
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea
  2. 2.Korea Research Institute of Chemical TechnologyDaejeonSouth Korea

Personalised recommendations