Catalysis Letters

, 132:410 | Cite as

Production of Middle Distillate Through Hydrocracking of Paraffin Wax Over NiMo/SiO2-Al2O3 Catalysts: Effect of Solvent in the Preparation of SiO2-Al2O3 by a Sol–Gel Method

  • Sunhwan Hwang
  • Joongwon Lee
  • Jeong Gil Seo
  • Dong Ryul Park
  • Min Hye Youn
  • Ji Chul Jung
  • Sang-Bong Lee
  • In Kyu Song


SiO2-Al2O3 supports were prepared by a sol–gel method in the presence of distilled water and ethanol, respectively (SiO2-Al2O3 supports were donated as H-SA and E-SA, respectively). NiMo/SiO2-Al2O3 catalysts (NiMo/H-SA and NiMo/E-SA) were then prepared by an impregnation method for use in the production of middle distillate (C10–C20) through hydrocracking of paraffin wax. The effect of solvent in the preparation of SiO2-Al2O3 support on the catalytic performance of NiMo/SiO2-Al2O3 catalyst was investigated. NiMo/H-SA catalyst showed a higher conversion of wax and a higher selectivity for middle distillate than NiMo/E-SA catalyst. The identity of solvent strongly affected the physical properties of H-SA and E-SA supports. High surface area of H-SA enhanced the dispersion of impregnated metal species, resulting in the increase of active sites of NiMo/H-SA catalyst. Large pore volume and large pore diameter of NiMo/H-SA catalyst played an important role in enhancing internal mass transfer during the reaction. Large acidity of NiMo/H-SA catalyst compared to NiMo/E-SA catalyst was responsible for high conversion of wax over NiMo/H-SA catalyst. The enhanced selectivity for middle distillate over NiMo/H-SA catalyst was attributed to abundant active sites for hydrogenation reaction.


Hydrocracking Paraffin wax NiMo/SiO2-Al2O3 Middle distillate Sol–gel method 



The authors would like to acknowledge funding from the Korea Ministry of Knowledge Economy (MKE) through “Energy Technology Innovation Program”.


  1. 1.
    Li M, Wang J-q, Deng W-a, Que G-h (2007) J Fuel Chem Technol 35:558–562CrossRefGoogle Scholar
  2. 2.
    Pellegrini L, Bonomi S, Gamba S, Calemma V, Molinari D (2007) Chem Eng Sci 62:5013–5020CrossRefGoogle Scholar
  3. 3.
    Ali MA, Tatsumi T, Masuda T (2002) Appl Catal A Gen 233:77–90CrossRefGoogle Scholar
  4. 4.
    Alsobaai AM, Zakaria R, Hameed BH (2007) Fuel Process Technol 88:921–928CrossRefGoogle Scholar
  5. 5.
    Yang H, Fairbridge C, Hill J, Ring Z (2004) Catal Today 93–95:457–465CrossRefGoogle Scholar
  6. 6.
    Cho KM, Park S, Seo JG, Youn MH, Baeck S-H, Jun K-W, Chung JS, Song IK (2008) Appl Catal B Environ 83:195–201CrossRefGoogle Scholar
  7. 7.
    Robinson WRAM, van Veen JAR, de Beer VHJ, van Santen RA (1999) Fuel Process Technol 61:89–101CrossRefGoogle Scholar
  8. 8.
    Robinson WRAM, van Veen JAR, de Beer VHJ, van Santen RA (1999) Fuel Process Technol 61:103–116CrossRefGoogle Scholar
  9. 9.
    Fujikawa T, Idei K, Ebihara T, Mizuguchi H, Usui K (2000) Appl Catal A Gen 192:253–261CrossRefGoogle Scholar
  10. 10.
    Ancheyta-Juárez J, Aguilar-Rodríguez E, Salazar-Sotelo D, Marroquín-Sáncheza G, Quiroz-Sosa G, Leiva-Nuncio M (1999) Appl Catal A Gen 183:265–272CrossRefGoogle Scholar
  11. 11.
    Benazzi E, Leite L, Marchal-George N, Toulhoat H, Raybaud P (2003) J Catal 217:376–387Google Scholar
  12. 12.
    Leckel D (2009) Energy Fuel 23:2370–2375CrossRefGoogle Scholar
  13. 13.
    Fang K, Wei W, Ren J, Sun Y (2004) Catal Lett 93:235–242CrossRefGoogle Scholar
  14. 14.
    Mohanty S, Kunzru D, Saraf DN (1990) Fuel 69:1467–1473CrossRefGoogle Scholar
  15. 15.
    Rezgui Y, Guemini M (2005) Appl Catal A Gen 282:45–53CrossRefGoogle Scholar
  16. 16.
    Zhang S, Zhang Y, Tierney JW, Wender I (2001) Fuel Process Technol 69:59–71CrossRefGoogle Scholar
  17. 17.
    Alsobaai AM, Zakaria R, Hameed BH (2007) Chem Eng J 132:77–83CrossRefGoogle Scholar
  18. 18.
    Cho KM, Park S, Seo JG, Youn MH, Nam I, Baeck S-H, Chung JS, Jun K-W, Song IK (2009) Chem Eng J 146:307–314CrossRefGoogle Scholar
  19. 19.
    Calemma V, Peratello S, Perego C (2000) Appl Catal A Gen 190:207–218CrossRefGoogle Scholar
  20. 20.
    Sánchez-Minero F, Ramírez J, Gutiérrez-Alejandre A, Fernández-Vargas C, Torres-Mancera P, Cuevas-Garcia R (2008) Catal Today 133–135:267–276CrossRefGoogle Scholar
  21. 21.
    Hietala SL, Smith DM, Brinker CJ, Hurd AJ, Carim AH, Dando N (1990) J Am Ceram Soc 73:2815–2821CrossRefGoogle Scholar
  22. 22.
    Hwang S, Lee J, Park S, Park DR, Jung JC, Lee S-B, Song IK (2009) Catal Lett 129:163–169CrossRefGoogle Scholar
  23. 23.
    Klein LC (1985) Ann Rev Mater Sci 15:227–248CrossRefGoogle Scholar
  24. 24.
    Wang S, Liu H, Zhang L, Yao X (1995) Ferroelectrics Lett 19:89–94CrossRefGoogle Scholar
  25. 25.
    Carja G, Kameshima Y, Okada K (2008) Micropor Mesopor Mat 115:541–547CrossRefGoogle Scholar
  26. 26.
    Ahmed AE, Adam F (2007) Micropor Mesopor Mat 103:284–295CrossRefGoogle Scholar
  27. 27.
    Sheng Q, Cong Y, Yuan S, Zhang J, Anpo M (2006) Micropor Mesopor Mat 95:220–225CrossRefGoogle Scholar
  28. 28.
    Yoosuk B, Kim JH, Song C, Ngamcharussrivichai C, Prassassarakich P (2008) Catal Today 130:14–23CrossRefGoogle Scholar
  29. 29.
    Qu L, Zhang W, Kooyman PJ, Prins R (2003) J Catal 215:7–13CrossRefGoogle Scholar
  30. 30.
    Payen E, Hubaut R, Kasztelan S, Poulet O, Grimblot J (1994) J Catal 147:123–132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sunhwan Hwang
    • 1
  • Joongwon Lee
    • 1
  • Jeong Gil Seo
    • 1
  • Dong Ryul Park
    • 1
  • Min Hye Youn
    • 1
  • Ji Chul Jung
    • 1
  • Sang-Bong Lee
    • 2
  • In Kyu Song
    • 1
  1. 1.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulSouth Korea
  2. 2.Korea Research Institute of Chemical TechnologyDaejeonSouth Korea

Personalised recommendations