Catalysis Letters

, Volume 131, Issue 3–4, pp 432–439 | Cite as

Highly Enantioselective Organocatalytic Addition of Ethyl Trifluoropyruvate to Ketones with Subzero Temperature Microwave Activation



An enantioselective organocatalytic microwave-assisted method for the addition of ethyl trifluoropyruvate to ketones to synthesize highly enantiomerically enriched organofluorine synthons is described. Besides the high yields, diastereo- and enantioselectivities, the most important observation is that the use of microwave irradiation at subzero temperatures proved to be beneficial. The results indicate that subzero temperature microwave chemistry is a potentially intriguing tool for asymmetric synthesis.


Microwave irradiation Asymmetric synthesis Organofluorine Subzero temperature Organocatalysis 



Financial support provided by the University of Massachusetts Boston, and National Institute of Health (R-15 AG025777-02) is gratefully acknowledged.


  1. 1.
    Fried J, Sabo EF (1954) J Am Chem Soc 7:1455CrossRefGoogle Scholar
  2. 2.
    Soloshonok VA (ed) (1999) Enantiocontrolled synthesis of fluoroorganic compounds. Stereochemical challenges and biomedicinal targets. Wiley, New YorkGoogle Scholar
  3. 3.
    Ramachandran PV (ed) (2001) Asymmetric fluoroorganic chemistry, ACS Symposium. Series, ACS, Washington, DCGoogle Scholar
  4. 4.
    Hiyama T (ed) (2001) Organofluorine compounds. Springer, BerlinGoogle Scholar
  5. 5.
    Kirsch P (2004) Modern fluoroorganic chemistry: synthesis, reactivity, applications. Wiley, New YorkGoogle Scholar
  6. 6.
    Soloshonok VA (ed) (2005) Fluorine-containing synthons; ACS Symposium. Series, ACS: Washington DCGoogle Scholar
  7. 7.
    Prakash GKS, Beier P (2006) Angew Chem Int Ed 45:2172CrossRefGoogle Scholar
  8. 8.
    Prakash GKS, Yudin A (1997) Chem Rev 97:757CrossRefGoogle Scholar
  9. 9.
    Prakash GKS, Mandal M, Olah GA (2001) Angew Chem Int Ed 40:589CrossRefGoogle Scholar
  10. 10.
    Török M, Abid M, Mhadgut SC, Török B (2006) Biochemistry 45:5377CrossRefGoogle Scholar
  11. 11.
    Yoder NC, Kumar K (2002) Chem Soc Rev 31:335CrossRefGoogle Scholar
  12. 12.
    Papeo G, Giordano P, Brasca MG, Buzzo F, Caronni D, Ciprandi F, Mongelli N, Veronesi M, Vulpetti A, Dalvit C (2007) J Am Chem Soc 129:5665CrossRefGoogle Scholar
  13. 13.
    Dalko PI, Moissan L (2001) Angew Chem Int Ed 40:3726CrossRefGoogle Scholar
  14. 14.
    Dalko PI, Moissan L (2004) Angew Chem Int Ed 43:5138CrossRefGoogle Scholar
  15. 15.
    Tian SK, Chen Y, Hang J, Tang L, McDaid P, Deng L (2004) Acc Chem Res 37:621CrossRefGoogle Scholar
  16. 16.
    Berkessel A, Gröger H (2005) Asymmetric organocatalysis. Wiley, New YorkCrossRefGoogle Scholar
  17. 17.
    Dondoni A, Massi A (2008) Angew Chem Int Ed 47:4638CrossRefGoogle Scholar
  18. 18.
    Steiner DD, Mase N, Barbas CF (2005) Angew Chem Int Ed 44:3706CrossRefGoogle Scholar
  19. 19.
    Pihko PM (2006) Angew Chem Int Ed 45:544CrossRefGoogle Scholar
  20. 20.
    Ogawa S, Shibata N, Inagaki J, Nakamura S, Toru T, Shira M (2007) Angew Chem Int Ed 46:8666CrossRefGoogle Scholar
  21. 21.
    Wang Y, Liu X, Deng L (2006) J Am Chem Soc 128:3928CrossRefGoogle Scholar
  22. 22.
    Westermann B, Neuhaus C (2005) Angew Chem Int Ed 44:4077CrossRefGoogle Scholar
  23. 23.
    Rodriguez B, Bolm C (2006) J Org Chem 71:2888CrossRefGoogle Scholar
  24. 24.
    Mosse S, Alexakis A (2006) Org Lett 8:3577CrossRefGoogle Scholar
  25. 25.
    Singh BK, Appukkuttan P, Claerhout S, Parmar VS, Eycken EVDE (2006) Org Lett 8:1863CrossRefGoogle Scholar
  26. 26.
    Hosseini M, Stiasni N, Barbieri V, Kappe CO (2007) J Org Chem 72:1417CrossRefGoogle Scholar
  27. 27.
    Loupy A (2005) Microwaves in organic synthesis. Wiley, New YorkGoogle Scholar
  28. 28.
    Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley, New YorkCrossRefGoogle Scholar
  29. 29.
    Kappe CO, Dallinger D (2006) Nature Rev 5:51CrossRefGoogle Scholar
  30. 30.
    Török B, Abid M, London G, Esquibel J, Török M, Mhadgut SC, Yan P, Prakash GKS (2005) Angew Chem Int Ed 44:3086CrossRefGoogle Scholar
  31. 31.
    Abid M, Teixeira L, Török B (2008) Org Lett 10:933CrossRefGoogle Scholar
  32. 32.
    List B (2002) Tetrahedron 58:5573CrossRefGoogle Scholar
  33. 33.
    Notz W, Tanaka F, Barbas CF (2004) Acc Chem Res 37:580CrossRefGoogle Scholar
  34. 34.
    List B (2004) Acc Chem Res 37:548CrossRefGoogle Scholar
  35. 35.
    Mukherjee S, Yang JW, Hoffmann S, List B (2007) Chem Rev 107:5471CrossRefGoogle Scholar
  36. 36.
    Golubev AS, Galakhov MV, Kolomiets AF, Fokin AV (1989) Izv Akad Nauk, SSSR, 2127Google Scholar
  37. 37.
    Palecek J, Paleta O (2004) Synthesis 521Google Scholar
  38. 38.
    Funabiki K, Yamamoto H, Nagaya H, Matsui M (2006) Tetrahedron Lett 47:5507CrossRefGoogle Scholar
  39. 39.
    Suri JT, Mitsumori S, Albertshofer K, Tanaka F, Barbas CF (2006) J Org Chem 71:3822CrossRefGoogle Scholar
  40. 40.
    Perreux L, Loupy A (2001) Tetrahedron 57:9199CrossRefGoogle Scholar
  41. 41.
    De La Hoz A, Diaz-Ortiz A, Moreno A (2005) Chem Soc Rev 34:164CrossRefGoogle Scholar
  42. 42.
    Strauss CR, Trainor RW (1995) Aust J Chem 48:1665CrossRefGoogle Scholar
  43. 43.
    Hayes BL, Collins MJ Jr (2004) World Patent, WO 04,002,617Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Massachusetts BostonBostonUSA

Personalised recommendations