Catalysis Letters

, Volume 133, Issue 1–2, pp 27–32 | Cite as

FTIR Study of Cobalt Containing Aluminophosphates with Chabasite Like Structure by Using CO and NO as Molecular Probes

  • E. Gianotti
  • M. Vishnuvarthan
  • G. Berlier
  • L. Marchese
  • S. Coluccia


FTIR spectroscopy of adsorbed molecules such as CO and NO was used to monitor the nature of cobalt centres in Co-containing aluminophosphates (AlPOs) and silicoaluminophosphates (SAPOs) with chabasite-like structures. The samples were synthesized by following a facile route during which the cobalt ions were directly inserted in the synthesis gels. These studies show that Co2+ ions are located in framework positions in CoAPO-34, where they substitute for some Al3+ ions, whilst in CoAPSO-34, where Si4+ ions replacing for some phosphorous lead to negative charges in the aluminophosphate framework, are contemporarily present both in framework and extra-framework positions. It is likely that, in the latter case, some cobalt ions act as counter ions compensating the negative structure.


CoAPO-34 CoAPSO-34 NO and CO adsorption FTIR spectroscopy NO oxidation products 



M. Vishnuvarthan thanks the Italian Ministry of University and Research (MIUR) for bursaries to favour young Indian researchers for the financial years 2007–2008, within the Memorandum of Understanding stipulated on the 14th of February 2005 with the Indian Ministry of Science and Technology.


  1. 1.
    Hartmann M, Kevan L (1999) Chem Rev 99:635CrossRefGoogle Scholar
  2. 2.
    Weckhuysen BM, Rao RR, Martens JA, Schoonhetdt RA (1999) Eur J Inorg Chem 565Google Scholar
  3. 3.
    Wei A-C, Chao K-J (2000) J Chin Chem Soc 47:33Google Scholar
  4. 4.
    Hartmann M, Kevan L (2002) Res Chem Intermed 28:625CrossRefGoogle Scholar
  5. 5.
    Pastore HO, Coluccia S, Marchese L (2005) Annu Rev Mater Res 35:351CrossRefGoogle Scholar
  6. 6.
    Rajić N (2005) J Serb Chem Soc 70:371CrossRefGoogle Scholar
  7. 7.
    Thomas JM (1997) Angew Chem Int Ed Engl 36:1144CrossRefGoogle Scholar
  8. 8.
    Ohtsuka H, Tabata T, Okada O, Sabatino L, Bellussi G (1998) Catal Today 42:45CrossRefGoogle Scholar
  9. 9.
    Modén B, Oliviero L, Dakka J, Santiesteban JG, Iglesia E (2004) J Phys Chem B 108:5552CrossRefGoogle Scholar
  10. 10.
    Lourenço JP, Ribeiro MF, Borges C, Rocha J, Onida B, Garrone E, Gabelica Z (2000) Microporous Mesoporous Mater 38:267CrossRefGoogle Scholar
  11. 11.
    Peeters MPJ, Busio M, Leijten P (1994) Appl Catal A Gen 118:51CrossRefGoogle Scholar
  12. 12.
    Lin S-S, Weng H-S (1994) Appl Catal A Gen 118:21CrossRefGoogle Scholar
  13. 13.
    Höchtl M, Jentys A, Vinek H (1999) Microporous Mesoporous Mater 31:271CrossRefGoogle Scholar
  14. 14.
    Lin S-S, Weng H-S (1993) Appl Catal A Gen 105:289CrossRefGoogle Scholar
  15. 15.
    Vanoppen DL, De Vos DE, Genet MJ, Rouxhet PG, Jacobs PA (1995) Angew Chem Int Ed Engl 34:560CrossRefGoogle Scholar
  16. 16.
    Thomas JM, Raja R, Sankar G, Bell RG (2001) Acc Chem Res 34:191CrossRefGoogle Scholar
  17. 17.
    Tian P, Liu Z, Wu Z, Xu L, He Y (2004) Catal Today 93–95:735CrossRefGoogle Scholar
  18. 18.
    Höchtl M, Jentis A, Vinek H (2001) Appl Catal A Gen 207:397CrossRefGoogle Scholar
  19. 19.
    Franklin IL, Beale AM, Sankar G (2003) Catal Today 81:623CrossRefGoogle Scholar
  20. 20.
    Chen J, Thomas JM (1994) J Chem Soc Chem Commun 603Google Scholar
  21. 21.
    Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS (2003) Fuel Process Technol 83:203CrossRefGoogle Scholar
  22. 22.
    Kang M (2000) J Mol Catal A Chem 160:437CrossRefGoogle Scholar
  23. 23.
    Thomas JM, Xu Y, Catlow CRA, Couves JW (1991) Chem Mater 3:667CrossRefGoogle Scholar
  24. 24.
    Montes C, Davis ME, Murray B, Narayana M (1990) J Phys Chem 94:6425CrossRefGoogle Scholar
  25. 25.
    Kraushaar-Czarnetzki B, Hoogervorst WGM, Andrea RR, Emeis CA, Stork WHJ (1991) J Chem Soc Faraday Trans 87:891CrossRefGoogle Scholar
  26. 26.
    Chen J, Sankar G, Thomas JM, Xu R, Greaves GN, Waller D (1992) Chem Mater 4:1373CrossRefGoogle Scholar
  27. 27.
    Iton LE, Choi I, Desjardins JA, Maroni VA (1989) Zeolites 9:535CrossRefGoogle Scholar
  28. 28.
    Frache A, Gianotti E, Marchese L (2003) Catal Today 77:371CrossRefGoogle Scholar
  29. 29.
    Marchese L, Gianotti E, Palella B, Pirone R, Marta G, Coluccia S, Ciambelli P (2002) Stud Surf Sci Catal 130:3005CrossRefGoogle Scholar
  30. 30.
    Hocevar S, Batista J, Kucic V (1993) J Catal 139:351CrossRefGoogle Scholar
  31. 31.
    Thomas JM, Greaves GN, Sankar G, Wright PA, Chen J, Dent AJ, Marchese L (1994) Angew Chem Int Ed Engl 33:1871CrossRefGoogle Scholar
  32. 32.
    Barrett PA, Sankar G, Catlow CRA, Thomas JM (1996) J Phys Chem 100:8977CrossRefGoogle Scholar
  33. 33.
    Marchese L, Chen JS, Thomas JM, Coluccia S, Zecchina A (1994) J Phys Chem 98:13350CrossRefGoogle Scholar
  34. 34.
    Marchese L, Martra G, Damilano N, Coluccia S, Thomas JM (1996) Stud Surf Sci Catal 101:861CrossRefGoogle Scholar
  35. 35.
    Gianotti E, Marchese L, Martra G, Coluccia S (1999) Catal Today 54:547CrossRefGoogle Scholar
  36. 36.
    Gianotti E, Paganini MC, Martra G, Giamello E, Coluccia S, Marchese L (2001) Stud Surf Sci Catal 135:178CrossRefGoogle Scholar
  37. 37.
    Moen A, Nicholson DG, Rønning M, Lamble GM, Lee JF, Emerich H (1997) J Chem Soc Faraday Trans 93:4071CrossRefGoogle Scholar
  38. 38.
    Frache A, Palella B, Cadoni M, Pirone R, Ciambelli P, Pastore HO, Marchese L (2002) Catal Today 75:359CrossRefGoogle Scholar
  39. 39.
    Rossin JA, Saldarriaga C, Davis ME (1987) Zeolites 7:295CrossRefGoogle Scholar
  40. 40.
    Inui T, Kim J-B, Takeguchi T (1996) Zeolites 17:354CrossRefGoogle Scholar
  41. 41.
    Montanari T, Marie O, Daturi M, Busca G (2005) Catal Today 110:339CrossRefGoogle Scholar
  42. 42.
    Marchese L, Frache A, Gianotti E, Martra G, Causà M, Coluccia S (1999) Microporous Mesoporous Mater 30:145CrossRefGoogle Scholar
  43. 43.
    Martucci A, Alberti A, Cruciani G, Frache A, Marchese L (2002) Stud Surf Sci Catal 142:151CrossRefGoogle Scholar
  44. 44.
    Martucci A, Alberti A, Cruciani G, Frache A, Marchese L, Pastore HO (2005) J Phys Chem B 109:13483CrossRefGoogle Scholar
  45. 45.
    Martucci A, Alberti A, Cruciani G, Frache A, Coluccia S, Marchese L (2003) J Phys Chem B 107:9655CrossRefGoogle Scholar
  46. 46.
    Prakash AM, Chilukuri SVV, Ashtekar S, Chakrabarty DK (1996) J Chem Soc Faraday Trans 92:1257CrossRefGoogle Scholar
  47. 47.
    Schoonheydt RA, de Vos R, Pelgrims J, Leeman H (1989) Stud Surf Sci Catal 49:559CrossRefGoogle Scholar
  48. 48.
    Shiralkar VP, Saldarriaga CH, Perez JO, Clearfield A (1989) Zeolites 9:474CrossRefGoogle Scholar
  49. 49.
    Hill SJ, Williams CD, Duke CVA (1996) Zeolites 17:291CrossRefGoogle Scholar
  50. 50.
    Hardening MM, Kariuki BM (1994) Acta Cryst C50:852Google Scholar
  51. 51.
    Vishnuvarthan M, Murugesan V, Gianotti E, Bertinetti L, Coluccia S, Berlier G (2009) Microporous Mesoporous Mater (in press). doi:  10.1016/j.micromeso.2009.03.035
  52. 52.
    Geobaldo F, Onida B, Rivolo P, Di Renzo F, Fajula F, Garrone E (2001) Catal Today 70:107CrossRefGoogle Scholar
  53. 53.
    Coluccia S, Marchese L, Martra G (1999) Microporous Mesoporous Mater 30:43CrossRefGoogle Scholar
  54. 54.
    Hadjiivanov KI (2000) Catal Rev Sci Eng 42:71CrossRefGoogle Scholar
  55. 55.
    Hadjiivanov KI, Tsyntarski B, Nikolova T (1999) Phys Chem Chem Phys 1:4521CrossRefGoogle Scholar
  56. 56.
    Zhu CY, Lee CW, Chong PJ (1996) Zeolites 17:483CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. Gianotti
    • 1
  • M. Vishnuvarthan
    • 1
  • G. Berlier
    • 1
  • L. Marchese
    • 2
  • S. Coluccia
    • 1
  1. 1.Dipartimento di Chimica IFM and NIS, Centre of ExcellenceUniversità degli Studi di TorinoTorinoItaly
  2. 2.Dipartimento di Scienze e Tecnologie Avanzate and Nano-SiSTeMI Interdisciplinary CentreUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations