Skip to main content

Advertisement

Log in

Hydrogen Formation in the Reactions of Methanol on Supported Au Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The adsorption and reactions of methanol have been investigated on Au metal supported by various oxides and carbon Norit of high surface area. Infrared spectroscopic studies revealed the dissociation of methanol at 300 K, which mainly occurs on the oxide-supports yielding methoxy species. The presence of Au already appeared in the increased amounts of desorbed products in the TPD spectra. The reaction pathway of the decomposition and the activity of the catalyst sensitively depend on the nature of the support. As regards the production of hydrogen the most effective catalyst is Au/CeO2 followed by Au/MgO, Au/TiO2 and Au/Norit. In contrast, on Au/Al2O3 the main process is the dehydration reaction yielding dimethyl ether. On Au/CeO2 the decomposition of methanol starts above ~500 K and approaches total conversion at 723–773 K. The products are H2 (~68%) and CO (~27%) with very small amounts of methane and CO2. The decomposition of methanol follows the first order kinetics. The activation energy of this process is 87.0 kJ/mol. The selectivity of H2 formation at 573–773 K was ~90%, this value increased to 97% using CH3OH:H2O (1:1) reacting mixture indicating the involvement of water in the reaction. No deactivation of Au catalysts was experienced at 773 K in ~10 h. It is assumed that the interface between Au and partially reduced ceria is responsible for the high activity of Au/CeO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sandstede G, Veziroglu TN, Derive C, Pottier J (eds) (1972) Proceedings of the 9th world hydrogen energy conference, Paris, France, p 1745

  2. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  3. Muradov N (2001) Catal Commun 2:89

    Article  CAS  Google Scholar 

  4. Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrogen Energy 26:665

    Article  CAS  Google Scholar 

  5. Galvita VV, Semin GL, Belyaev VD, Semikolenov VA, Tsiakaras P, Solyanin VA (2001) Appl Catal A Gen 220:123

    Article  CAS  Google Scholar 

  6. Díagne C, Idriss H, Kiennemann A (2002) Catal Commun 3:565

    Article  Google Scholar 

  7. Barthos R, Solymosi F (2007) J Catal 249:289

    Article  CAS  Google Scholar 

  8. Koós Á, Barthos R, Solymosi F (2008) J Phys Chem C 112:2607

    Article  CAS  Google Scholar 

  9. Barthos R, Széchenyi A, Solymosi F (2008) Catal Letts 120:161

    Article  CAS  Google Scholar 

  10. Barthos R, Széchenyi A, Koós Á, Solymosi F (2007) Appl Catal A Gen 327:95

    Article  CAS  Google Scholar 

  11. Solymosi F, Barthos R, Kecskeméti A (2008) Appl Catal A Gen 350:30

    Article  CAS  Google Scholar 

  12. Haruta M, Kobayashi T, Sano H, Yamada N (1978) Chem Lett 2:405

    Google Scholar 

  13. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  14. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319

    Article  CAS  Google Scholar 

  15. Hutchings GJ (2002) Catal Today 72:11

    Article  CAS  Google Scholar 

  16. Kung MC, Davis RJ, Kung HK (2007) J Phys Chem 111:11767

    CAS  Google Scholar 

  17. Chen MS, Goodman DW (2004) Science 306:252

    Article  CAS  Google Scholar 

  18. Jannssens TVW, Carlsson A, Puig-Molina A, Clausen BS (2006) J Catal 240:108

    Article  CAS  Google Scholar 

  19. Aguilar-Guerrero V, Gates BC (2008) J Catal 260:351

    Article  CAS  Google Scholar 

  20. Ueda A, Haruta M (1999) Gold Bull 32:3

    CAS  Google Scholar 

  21. Solymosi F, Bánsági T, Süli Zakar T (2003) Phys Chem Chem Phys 5:4724

    Article  CAS  Google Scholar 

  22. Mitov I, Klissurski D, Minchev C (2008) Comptes Rendus De L Acad Bulgare Des Sci 61:1003

    CAS  Google Scholar 

  23. Haruta M, Ueda A, Tsubota S, Torres Sanchez RM (1996) Catal Today 29:443

    Article  CAS  Google Scholar 

  24. Nuhu A, Soares J, Gonzalez-Herrera M, Watts A, Hussein G, Bowker M (2007) Top Catal 44:293

    Article  CAS  Google Scholar 

  25. Boccuzzi F, Chiorino A, Manzoli M (2003) J Power Sources 118:304

    Article  CAS  Google Scholar 

  26. Manzoli M, Chiorino A, Boccuzzi F (2005) Appl Catal B Env 57:201

    Article  CAS  Google Scholar 

  27. Busca G, Lamotte J, Lavalley JC, Lorenzelli V (1987) J Am Chem Soc 109:5197

    Article  CAS  Google Scholar 

  28. Badri A, Binet C, Lavalley JC (1997) J Chem Soc Faraday Trans 93:1159

    Article  CAS  Google Scholar 

  29. Finocchio E, Daturi M, Binet C, Lavalley JC, Blanchard G (1999) Catal Today 52:53

    Article  CAS  Google Scholar 

  30. Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256

    Article  CAS  Google Scholar 

  31. Binet C, Daturi M (2001) Catal Today 70:155

    Article  CAS  Google Scholar 

  32. Trovarelli A (ed) (2002) Catalysis by ceria and related materials. World scientific publishing company, Incorporated, USA

    Google Scholar 

  33. Bartheau MA, Madix RJ (1982) In: King DA, Woodruff DP (eds) The chemical physics of solid surface and heterogeneous catalysis. Elsevier, Amsterdam, p 95 (chapter 4)

    Google Scholar 

  34. Solymosi F, Berkó A, Tarnóczi TI (1984) Surf Sci 141:533

    Article  CAS  Google Scholar 

  35. Hrbek J, De Paola R, Hoffmann FM (1986) Surf Sci 166:361

    Article  CAS  Google Scholar 

  36. Davis JL, Barteau MA (1987) Surf Sci 187:387

    Article  CAS  Google Scholar 

  37. Solymosi F, Berkó A, Tóth Z (1993) Surf Sci 285:197

    Article  CAS  Google Scholar 

  38. Greeley J, Mavrikakis M (2004) J Am Chem Soc 126:3910

    Article  CAS  Google Scholar 

  39. Lewis RJ, Zhicheng J, Winograd N (1989) J Am Chem Soc 111:4605

    Article  Google Scholar 

  40. Guo X, Hanley L, Yates JT Jr (1989) J Am Chem Soc 111:3155

    Article  CAS  Google Scholar 

  41. Solymosi F, Révész K (1991) J Am Chem Soc 113:9145

    Article  CAS  Google Scholar 

  42. Rebholz M, Kruse N (1991) J Chem Phys 95:7745

    Article  CAS  Google Scholar 

  43. Morkel M, Kaichev VV, Rupprechter G, Freund H-J, Prosvirin IP, Bukhtiyarov VI (2004) J Phys Chem B 108:12955

    Article  CAS  Google Scholar 

  44. Lazaga MA, Wickham DT, Parker DH, Kastanas GN, Koel BE (1993) ACS Symp Ser 523:90

    Article  CAS  Google Scholar 

  45. Gong J, Flaherty DW, Ojifinni RA, White JM, Mullins CB (2008) J Phys Chem C 112:5501

    Article  CAS  Google Scholar 

  46. Solymosi F, Klivényi G (1993) J Electr Spectr 64/65:499

    Article  Google Scholar 

  47. Raskó J, Solymosi F (1998) Catal Letts 54:40

    Article  Google Scholar 

  48. Szabó ZG, Solymosi F (1961) Actes Congr Intern Catalyse 2e Paris 1960:1627

    Google Scholar 

  49. Solymosi F (1968) Catal Rev 1:233

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by OTKA under contract number NI 69327. The authors express their thanks to P. Németh for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Solymosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazsi, A., Bánsági, T. & Solymosi, F. Hydrogen Formation in the Reactions of Methanol on Supported Au Catalysts. Catal Lett 131, 33–41 (2009). https://doi.org/10.1007/s10562-009-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0052-6

Keywords

Navigation