Catalysis Letters

, Volume 131, Issue 1–2, pp 33–41 | Cite as

Hydrogen Formation in the Reactions of Methanol on Supported Au Catalysts

  • A. Gazsi
  • T. Bánsági
  • F. Solymosi


The adsorption and reactions of methanol have been investigated on Au metal supported by various oxides and carbon Norit of high surface area. Infrared spectroscopic studies revealed the dissociation of methanol at 300 K, which mainly occurs on the oxide-supports yielding methoxy species. The presence of Au already appeared in the increased amounts of desorbed products in the TPD spectra. The reaction pathway of the decomposition and the activity of the catalyst sensitively depend on the nature of the support. As regards the production of hydrogen the most effective catalyst is Au/CeO2 followed by Au/MgO, Au/TiO2 and Au/Norit. In contrast, on Au/Al2O3 the main process is the dehydration reaction yielding dimethyl ether. On Au/CeO2 the decomposition of methanol starts above ~500 K and approaches total conversion at 723–773 K. The products are H2 (~68%) and CO (~27%) with very small amounts of methane and CO2. The decomposition of methanol follows the first order kinetics. The activation energy of this process is 87.0 kJ/mol. The selectivity of H2 formation at 573–773 K was ~90%, this value increased to 97% using CH3OH:H2O (1:1) reacting mixture indicating the involvement of water in the reaction. No deactivation of Au catalysts was experienced at 773 K in ~10 h. It is assumed that the interface between Au and partially reduced ceria is responsible for the high activity of Au/CeO2 catalyst.


FTIR spectroscopy Formation of methoxy Reaction of methanol Hydrogen production Au catalyst CeO2 support 



This work was supported by OTKA under contract number NI 69327. The authors express their thanks to P. Németh for TEM measurements.


  1. 1.
    Sandstede G, Veziroglu TN, Derive C, Pottier J (eds) (1972) Proceedings of the 9th world hydrogen energy conference, Paris, France, p 1745Google Scholar
  2. 2.
    Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098CrossRefGoogle Scholar
  3. 3.
    Muradov N (2001) Catal Commun 2:89CrossRefGoogle Scholar
  4. 4.
    Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrogen Energy 26:665CrossRefGoogle Scholar
  5. 5.
    Galvita VV, Semin GL, Belyaev VD, Semikolenov VA, Tsiakaras P, Solyanin VA (2001) Appl Catal A Gen 220:123CrossRefGoogle Scholar
  6. 6.
    Díagne C, Idriss H, Kiennemann A (2002) Catal Commun 3:565CrossRefGoogle Scholar
  7. 7.
    Barthos R, Solymosi F (2007) J Catal 249:289CrossRefGoogle Scholar
  8. 8.
    Koós Á, Barthos R, Solymosi F (2008) J Phys Chem C 112:2607CrossRefGoogle Scholar
  9. 9.
    Barthos R, Széchenyi A, Solymosi F (2008) Catal Letts 120:161CrossRefGoogle Scholar
  10. 10.
    Barthos R, Széchenyi A, Koós Á, Solymosi F (2007) Appl Catal A Gen 327:95CrossRefGoogle Scholar
  11. 11.
    Solymosi F, Barthos R, Kecskeméti A (2008) Appl Catal A Gen 350:30CrossRefGoogle Scholar
  12. 12.
    Haruta M, Kobayashi T, Sano H, Yamada N (1978) Chem Lett 2:405Google Scholar
  13. 13.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  14. 14.
    Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319CrossRefGoogle Scholar
  15. 15.
    Hutchings GJ (2002) Catal Today 72:11CrossRefGoogle Scholar
  16. 16.
    Kung MC, Davis RJ, Kung HK (2007) J Phys Chem 111:11767Google Scholar
  17. 17.
    Chen MS, Goodman DW (2004) Science 306:252CrossRefGoogle Scholar
  18. 18.
    Jannssens TVW, Carlsson A, Puig-Molina A, Clausen BS (2006) J Catal 240:108CrossRefGoogle Scholar
  19. 19.
    Aguilar-Guerrero V, Gates BC (2008) J Catal 260:351CrossRefGoogle Scholar
  20. 20.
    Ueda A, Haruta M (1999) Gold Bull 32:3Google Scholar
  21. 21.
    Solymosi F, Bánsági T, Süli Zakar T (2003) Phys Chem Chem Phys 5:4724CrossRefGoogle Scholar
  22. 22.
    Mitov I, Klissurski D, Minchev C (2008) Comptes Rendus De L Acad Bulgare Des Sci 61:1003Google Scholar
  23. 23.
    Haruta M, Ueda A, Tsubota S, Torres Sanchez RM (1996) Catal Today 29:443CrossRefGoogle Scholar
  24. 24.
    Nuhu A, Soares J, Gonzalez-Herrera M, Watts A, Hussein G, Bowker M (2007) Top Catal 44:293CrossRefGoogle Scholar
  25. 25.
    Boccuzzi F, Chiorino A, Manzoli M (2003) J Power Sources 118:304CrossRefGoogle Scholar
  26. 26.
    Manzoli M, Chiorino A, Boccuzzi F (2005) Appl Catal B Env 57:201CrossRefGoogle Scholar
  27. 27.
    Busca G, Lamotte J, Lavalley JC, Lorenzelli V (1987) J Am Chem Soc 109:5197CrossRefGoogle Scholar
  28. 28.
    Badri A, Binet C, Lavalley JC (1997) J Chem Soc Faraday Trans 93:1159CrossRefGoogle Scholar
  29. 29.
    Finocchio E, Daturi M, Binet C, Lavalley JC, Blanchard G (1999) Catal Today 52:53CrossRefGoogle Scholar
  30. 30.
    Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256CrossRefGoogle Scholar
  31. 31.
    Binet C, Daturi M (2001) Catal Today 70:155CrossRefGoogle Scholar
  32. 32.
    Trovarelli A (ed) (2002) Catalysis by ceria and related materials. World scientific publishing company, Incorporated, USAGoogle Scholar
  33. 33.
    Bartheau MA, Madix RJ (1982) In: King DA, Woodruff DP (eds) The chemical physics of solid surface and heterogeneous catalysis. Elsevier, Amsterdam, p 95 (chapter 4)Google Scholar
  34. 34.
    Solymosi F, Berkó A, Tarnóczi TI (1984) Surf Sci 141:533CrossRefGoogle Scholar
  35. 35.
    Hrbek J, De Paola R, Hoffmann FM (1986) Surf Sci 166:361CrossRefGoogle Scholar
  36. 36.
    Davis JL, Barteau MA (1987) Surf Sci 187:387CrossRefGoogle Scholar
  37. 37.
    Solymosi F, Berkó A, Tóth Z (1993) Surf Sci 285:197CrossRefGoogle Scholar
  38. 38.
    Greeley J, Mavrikakis M (2004) J Am Chem Soc 126:3910CrossRefGoogle Scholar
  39. 39.
    Lewis RJ, Zhicheng J, Winograd N (1989) J Am Chem Soc 111:4605CrossRefGoogle Scholar
  40. 40.
    Guo X, Hanley L, Yates JT Jr (1989) J Am Chem Soc 111:3155CrossRefGoogle Scholar
  41. 41.
    Solymosi F, Révész K (1991) J Am Chem Soc 113:9145CrossRefGoogle Scholar
  42. 42.
    Rebholz M, Kruse N (1991) J Chem Phys 95:7745CrossRefGoogle Scholar
  43. 43.
    Morkel M, Kaichev VV, Rupprechter G, Freund H-J, Prosvirin IP, Bukhtiyarov VI (2004) J Phys Chem B 108:12955CrossRefGoogle Scholar
  44. 44.
    Lazaga MA, Wickham DT, Parker DH, Kastanas GN, Koel BE (1993) ACS Symp Ser 523:90CrossRefGoogle Scholar
  45. 45.
    Gong J, Flaherty DW, Ojifinni RA, White JM, Mullins CB (2008) J Phys Chem C 112:5501CrossRefGoogle Scholar
  46. 46.
    Solymosi F, Klivényi G (1993) J Electr Spectr 64/65:499CrossRefGoogle Scholar
  47. 47.
    Raskó J, Solymosi F (1998) Catal Letts 54:40CrossRefGoogle Scholar
  48. 48.
    Szabó ZG, Solymosi F (1961) Actes Congr Intern Catalyse 2e Paris 1960:1627Google Scholar
  49. 49.
    Solymosi F (1968) Catal Rev 1:233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Reaction Kinetics Research GroupChemical Research Centre of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Institute of Solid State and RadiochemistryUniversity of SzegedSzegedHungary

Personalised recommendations