Catalysis Letters

, Volume 131, Issue 1–2, pp 59–69 | Cite as

Quasicrystalline Structures as Catalyst Precursors for Hydrogenation Reactions

  • B. Phung Ngoc
  • C. Geantet
  • J. A. Dalmon
  • M. Aouine
  • G. Bergeret
  • P. Delichere
  • S. Raffy
  • S. Marlin


The quasicrystalline structures of alloys with nominal compositions of Al72Ni13.4Co14.6 and Al72.3Ni7.8Co19.8 were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. For catalytic application, the solids were leached with an alkaline NaOH solution and tested at 373 K with two model reactions under atmospheric pressure: hydrogenation of crotonaldehyde and acetonitrile. The catalytic activities of these leached alloys were compared to that of a Raney nickel reference catalyst. Catalysts prepared from quasicrystals showed high catalytic activities and high selectivities towards butanal (in crotonaldehyde hydrogenation) and ethylamine (in acetonitrile hydrogenation).


Quasicrystal Crotonaldehyde Acetonitrile Hydrogenation Cobalt nickel alloys Raney nickel 



The authors thank St. Gobain CREE for providing the samples and the financial support. Education and Training Ministry of Vietnam is also acknowledged for providing a grant.


  1. 1.
    Shechtman D, Blech IA, Gratias D, Cahn JW (1984) Phys Rev Lett 53:1951CrossRefGoogle Scholar
  2. 2.
    Tsai AP, Stadnik ZM (1999) Physical properties of quasicrystals, Springer series in solid-state science, vol 126. Springer, Berlin, p 5Google Scholar
  3. 3.
    Wang L, Tan Z, Zhang J, Zhou Q, Dong C (1999) Thermochimica Acta 331:21CrossRefGoogle Scholar
  4. 4.
    Rakchoun IV, Menushenkov AP, Chaitoura DS, Klementev KV (2005) Nucl Inst Meth Phys Res A 543:208CrossRefGoogle Scholar
  5. 5.
    Steurer W (2004) J non-cryst Sol 334 & 335:137CrossRefGoogle Scholar
  6. 6.
    Tsai AP (2003) Acc Chem Res 36:300CrossRefGoogle Scholar
  7. 7.
    Hiraga K, Lincoln FJ, Sun W (1991) Mater Trans Jpn Inst Metals 32:308Google Scholar
  8. 8.
    Edagawa K, Ichihara M, Takeuchi S (1992) Phil Mag Lett 66:697CrossRefGoogle Scholar
  9. 9.
    Edagawa K, Sawa H, Takeuchi S (1994) Phil Mag Lett 69:227CrossRefGoogle Scholar
  10. 10.
    Ritsch S, Beeli C, Nissen HU, Luck R (1995) Phil Mag A 71:671CrossRefGoogle Scholar
  11. 11.
    Grushko B, Holland-Mortz D, Wittmann R, Willde G (1998) J Alloys Compd 280:215CrossRefGoogle Scholar
  12. 12.
    Nosaki K, Masumoto T, Inoue K, Yamaguchi T (1998) US patent N° 5800638 Google Scholar
  13. 13.
    Yoshimura M, Tsai AP (2002) J Alloys Compd 342:451CrossRefGoogle Scholar
  14. 14.
    Tsai AP, Yoshimura M (2001) Appl Catal 214:237CrossRefGoogle Scholar
  15. 15.
    Tanabe T, Kameoka S, Tsai AP (2006) Catal Today 111:153CrossRefGoogle Scholar
  16. 16.
    Yamasaki M, Tsai AP (2002) J Alloys Compd 342:469CrossRefGoogle Scholar
  17. 17.
    Jenks CJ, Thiel PA (1998) J Mol Cat A Chemical 131:301CrossRefGoogle Scholar
  18. 18.
    Jenks CJ, Lofrasso TA, Thiel PA (1998) J Am Chem Soc 120:12668CrossRefGoogle Scholar
  19. 19.
    McGrath R, Ledieu J, Cox EJ, Jenks CJ, Lofrasso TA (2002) J Alloys Compd 342:432CrossRefGoogle Scholar
  20. 20.
    Sadoc A, Majzoub EH, Huette WT, Kelton KF (2003) J Alloys Compd 356 & 357:96CrossRefGoogle Scholar
  21. 21.
    Gallezot P, Richard D (1998) Catal Rev Sci Eng 40:81126CrossRefGoogle Scholar
  22. 22.
    Kluson P, Cerreny L, Had J (1994) Catal Lett 23:299CrossRefGoogle Scholar
  23. 23.
    Ammari F, Lamotte J, Touronde R (2004) J Catal 221:32CrossRefGoogle Scholar
  24. 24.
    Vannice MA, Sen B (1989) J Catal 115:65CrossRefGoogle Scholar
  25. 25.
    Vannice MA, Poondi D (1997) J Catal 169:166CrossRefGoogle Scholar
  26. 26.
    Wismeijer A, Kieboom APG, van Bekkum H (1986) Appl Catal 25:181CrossRefGoogle Scholar
  27. 27.
    Abid M, Ehret G, Touroude R (2001) Appl Catal A 217:219CrossRefGoogle Scholar
  28. 28.
    Concepcion P, Corma A, Silvestre-Albero J, Franco V, Chane-Ching Y (2004) J Am Chem Soc 126:5523CrossRefGoogle Scholar
  29. 29.
    Kurokawa H, Mori K, Yoshida K, Ohshima M, Sugiyama K, Miura H (2005) Catal Comm 6(12):766CrossRefGoogle Scholar
  30. 30.
    Hutchings GJ, King F, Okoye IP, Rochester CH (1992) Appl Catal A 83:L7CrossRefGoogle Scholar
  31. 31.
    Rodrigues EL, Marchi AJ, Apesteguia CR, Bueno JMC (2005) Appl Cata A 294:197CrossRefGoogle Scholar
  32. 32.
    Montromery SR (1981) Catalysis of organic reactions (Ed. W.R. Moser), Dekker, New York, USA, p 383Google Scholar
  33. 33.
    Noller H, Lin WM (1984) J Catal 85:25CrossRefGoogle Scholar
  34. 34.
    Raab CG, Lercher JA (1992) J Mol Catal 75:71CrossRefGoogle Scholar
  35. 35.
    Ando C, Kurokawa H, Miura H (1999) Appl Catal A 185:L181CrossRefGoogle Scholar
  36. 36.
    Li H, Chen X, Wang M, Xu Y (2002) Appl Catal A 225:117CrossRefGoogle Scholar
  37. 37.
    Pei Y, Hu H, Fang J, Qiao M, Dai W, Fan K, Li H (2004) J Mol Catal A Chemical 211:243CrossRefGoogle Scholar
  38. 38.
    Gluhoi AC, Marginean P, Stanescu U (2005) Appl Catal A 294:208CrossRefGoogle Scholar
  39. 39.
    Medina F, Dutartre R, Tichit D, Coq B, Dung NT, Salagre P, Sueiras JE (1997) J Mol Cata A Chemical 119:201CrossRefGoogle Scholar
  40. 40.
    Medina F, Tichit D, Coq B, Vaccari A, Dung NT (1997) J Catal 167:142CrossRefGoogle Scholar
  41. 41.
    Coq B, Tichit D, Ribet S (2000) J Catal 189(1):117CrossRefGoogle Scholar
  42. 42.
    Janot C, Dubois JM (1998) Les quasicristaux, matière à paradoxe, EDP Sciences, p 169Google Scholar
  43. 43.
    Fouilloux P (1983) Appl Catal 8:1CrossRefGoogle Scholar
  44. 44.
    Mellor JR, Covflle NJ, Sofianos AC, Copperthwaite RG (1997) Appl Catal A 164:171CrossRefGoogle Scholar
  45. 45.
    Marta CN, Carvalho A, Passos FB, Schmal M (2002) Appl Catal A 232:147CrossRefGoogle Scholar
  46. 46.
    Martin GA, Fouilloux P (1975) J Catal 38:231CrossRefGoogle Scholar
  47. 47.
    Richard MB, Ferromagnetism, Second trinting, Van Nostrand D (1951) Company, Inc p 284Google Scholar
  48. 48.
    Yurechko M, Grushko B, Velikanova TY, Urban K (2004) J Alloys Compd 367:20CrossRefGoogle Scholar
  49. 49.
    Hiraga K, Ohsuna T, Nishimura S (2000) Phil Mag Lett 80:653CrossRefGoogle Scholar
  50. 50.
    Hiraga K, Ohsuna T, Nishimura S (2001) Phil Mag Lett 81:109CrossRefGoogle Scholar
  51. 51.
    Sexton A, Hughes AE, Turney TW (1986) J Catal 97:390CrossRefGoogle Scholar
  52. 52.
    Rodrigues EL, Bueno JMC (2004) Appl Catal A General 257:201CrossRefGoogle Scholar
  53. 53.
    Dalmon JA (1994) Catalyst characterization: physical techniques for solid material, edited by Boris Imelik and Laces C. Vedrine, Plenum Press, New York p 585Google Scholar
  54. 54.
    Moulder JF, Strckle WF, Sobol PE, Bomben KD (1992) Hand book of X-ray photoelectron spectroscopy, Edited vay J. Chastain, Perkin-Elmer Corporation p 82Google Scholar
  55. 55.
    Lei H, Song Z, Tan D, Bao X, Mu B, Zong E, Min E (2001) Appl Catal A 214:69CrossRefGoogle Scholar
  56. 56.
    Hoffer BW, Crezee E, Devred F, Mooijman PRM, Sloof WG, Kooyman PJ, Langevel AD, Kapteijn F, Moulijn JA (2003) Appl Catal A 253:437CrossRefGoogle Scholar
  57. 57.
    Delbecq F, Sautet P (1995) J Catal 152:217CrossRefGoogle Scholar
  58. 58.
    Li H, Wu Y, Luo H, Wang M, Xu Y (2003) J Catal 214:15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Phung Ngoc
    • 1
  • C. Geantet
    • 1
  • J. A. Dalmon
    • 1
  • M. Aouine
    • 1
  • G. Bergeret
    • 1
  • P. Delichere
    • 1
  • S. Raffy
    • 2
  • S. Marlin
    • 2
  1. 1.Institut de Recherches sur la Catalyse et l’Environnement de LyonVilleurbanneFrance
  2. 2.St. Gobain CREECavaillonFrance

Personalised recommendations