Catalysis Letters

, 129:26 | Cite as

Replication Route Synthesis of Mesoporous Titanium–Cobalt Oxides and Their Photocatalytic Activity in the Degradation of Methyl Orange



Mesoporous Ti–Co oxides were synthesized via a replication route, using a 3-D wormlike mesoporous silica as template and tetra-tert-butyl orthotitanate (TBOT) and Co(NO3)2 as source materials. The prepared materials were characterized by X-ray diffraction (XRD), N2-physisorption, TEM, EDS, and UV/Vis-DRS and found to possess a spherical morphology and a 3-D wormhole-like mesoporous structure, with the average pore size between 4.5 and 16.0 nm. The pore walls consisted mainly of a cobalt-incorporated anatase phase. The Co3+ ions were generated in the replicated mesoporous Co–Ti oxides, via the transfer of electrons from Co2+ to Ti4+ ions. The formation of cobalt-incorporated anatase phase and Co3+ ions were both favored by larger Co/Ti atomic ratios and by relatively low calcination temperatures. The specific surface area decreased and the mesopore sizes increased, with increasing Co/Ti atomic ratio or calcination temperature. The average crystal size of the anatase phase decreased with increasing Co/Ti atomic ratio but increased with increasing calcination temperature. The photocatalytic activity of the replicated mesoporous Co–Ti oxides in the degradation of methyl orange dye was investigated. It was observed that the photocatalytic activity increased with increasing Co/Ti atomic ratio and exhibited a maximum with increasing calcination temperature. With the exception of those prepared at too high calcination temperatures, the replicated mesoporous Co–Ti oxides were much more active than the pure titania. It is concluded that, in addition to a higher diffusion, the cobalt-containing anatase, as the active phase, and the Co3+ ions, as the active sites, are responsible for the high photocatalytic activity of the replicated mesoporous Co–Ti oxide.


Mesoporous Co–Ti oxide Replication Photocatalytic degradation Methyl orange 



We are grateful to the financial support from the Program for New Century Excellent Talents in University, the Ministry of Education of P. R. China; and the Program for Lotus Scholar in Hunan Province, P. R. China.


  1. 1.
    Chuah GK, Hu X, Zhan P, Jaenicke S (2002) J Mol Catal A: Chem 181:25–31CrossRefGoogle Scholar
  2. 2.
    Sage V, Clark JH, Macquarrie DJ (2003) J Mol Catal A: Chem 198:349–358CrossRefGoogle Scholar
  3. 3.
    Kalogeras IM, Vassilikou-Dova A, Neagu ER (2001) Mater Res Innov 4:322–333CrossRefGoogle Scholar
  4. 4.
    Matthias G, Wark M, Wörle D, Schulz-Ekloff G (2000) Angew Chem 112:167–170CrossRefGoogle Scholar
  5. 5.
    Pan A, Zheng H, Yang Z, Liu F, Ding Z, Qian Y (2003) Mater Res Bull 38:789–796CrossRefGoogle Scholar
  6. 6.
    Coradin T, Larionova J, Smith AA, Rogez G, Cléac R, Guéin C, Blondin G, Winpenny REP, Sanchez C, Mallah T (2002) Adv Mater 14:896–898CrossRefGoogle Scholar
  7. 7.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  8. 8.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW et al (1992) J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  9. 9.
    Ciesla U, Schueth F (1999) Microporous Mesoporous Mater 27:131–149CrossRefGoogle Scholar
  10. 10.
    Corma A, Kumar D (1998) In Mesoporous molecular sieves 1998, vol 117. Elsevier Science Publ B V, Amsterdam, pp 201–222Google Scholar
  11. 11.
    Taguchi A, Schuth F (2005) Microporous Mesoporous Mater 77:1–45CrossRefGoogle Scholar
  12. 12.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  13. 13.
    Huo Q, Margolese DI, Clesla U, Feng P, Gler TE, Sieger P, Leon R, Petroff PM, Schuth F, Stucky GD (1994) Nature 368:317–321CrossRefGoogle Scholar
  14. 14.
    Tanev PT, Pinnavaia TJ (1995) Science 267:865–867CrossRefGoogle Scholar
  15. 15.
    Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Science 269:1242CrossRefGoogle Scholar
  16. 16.
    Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:321–323CrossRefGoogle Scholar
  17. 17.
    Antonelli DM, Ying JY (1995) Angew Chem (International Edition in English) 34:2014–2017Google Scholar
  18. 18.
    Antonelli DM, Nakahira A, Ying JY (1996) Inorg Chem 35:3126CrossRefGoogle Scholar
  19. 19.
    Tian Z-R, Tong W, Wang J-Y, Duan N-G, Krishnan VV, Suib SL (1997) Science 276:926–930CrossRefGoogle Scholar
  20. 20.
    Srivastava DN, Perkas N, Gedanken A, Felner I (2002) J Phys Chem B 106:1878–1883CrossRefGoogle Scholar
  21. 21.
    Yuan M, Shan Z, Tian B, Tu B, Yang P, Zhao D (2005) Microporous Mesoporous Mater 78:37–41CrossRefGoogle Scholar
  22. 22.
    Shyue JJ, DeGuire MR (2005) J Am Chem Soc 127:12736–12742CrossRefGoogle Scholar
  23. 23.
    Perkas N, Palchik O, Brukental I, Nowik I, Gofer Y, Koltypin Y, Gedanken A (2003) J Phys Chem B 107:8772–8778CrossRefGoogle Scholar
  24. 24.
    Liu Z, Zhang J, Han B, Du J, Mu T, Wang Y, Sun Z (2005) Microporous Mesoporous Mater 81:169–174CrossRefGoogle Scholar
  25. 25.
    Ruckenstein E, Chao ZS (2001) Nano Lett 1:739–742CrossRefGoogle Scholar
  26. 26.
    Wu G, Wang X, Chen B, Li J, Zhao N, Wei W, Sun Y (2007) Appl Catal A: Gen 329:106–111CrossRefGoogle Scholar
  27. 27.
    Kruk M, Jaroniec M, Ryoo R, Joo SH (2000) J Phys Chem B 104:7960–7968CrossRefGoogle Scholar
  28. 28.
    Hashimoto K, Wasada K, Osaki M, Shono E, Adachi K, Toukai N, Kominami H, Kera Y (2001) Appl Catal B: Environ 30:429–436CrossRefGoogle Scholar
  29. 29.
    Buciuman FC, Patcas F, Hahn T (1999) Chem Eng Process 38:563–569CrossRefGoogle Scholar
  30. 30.
    Chen H, Sayari A, Adnot A, Larachi F (2001) Appl Catal B: Environ 32:195–204CrossRefGoogle Scholar
  31. 31.
    Bessell S (1993) Appl Catal A: Gen 96:253–268CrossRefGoogle Scholar
  32. 32.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96CrossRefGoogle Scholar
  33. 33.
    Yang Q, Choi H, Dionysiou DD (2007) Appl Catal B: Environ 74:170–178CrossRefGoogle Scholar
  34. 34.
    Gracien EB, Shen J, Sun X, Liu D, Li M, Yao S, Sun J (2007) Thin Solid Films 515:5287–5297CrossRefGoogle Scholar
  35. 35.
    Kazachkov SG, Chashechnikova IT, Vorotyntsev VM, Golodets GI (1989) Petrol Chem USSR 29:123–129Google Scholar
  36. 36.
    Sun C, Tao L, Liang H, Huang C, Zhai H, Chao Z (2006) Mater Lett 60:2115–2118CrossRefGoogle Scholar
  37. 37.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103(37):7743–7746CrossRefGoogle Scholar
  38. 38.
    Wang Y, Chen S, Tang X, Palchik O, Zaban A, Koltypin Y, Gedanken A (2001) J Mater Chem 11:521–526CrossRefGoogle Scholar
  39. 39.
    Wang Y, Tang X, Yin L, Huang W, Hacohen YR, Gedanken A (2000) Adv Mater 12:1183–1186CrossRefGoogle Scholar
  40. 40.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  41. 41.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouqerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  42. 42.
    Kruk M, Jaroniec M (2001) Chem Mater 13:3169–3183CrossRefGoogle Scholar
  43. 43.
    Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F (2001) J Catal 202:118–128CrossRefGoogle Scholar
  44. 44.
    Anpo M, Takeuchi M (2003) J Catal 216:505–516CrossRefGoogle Scholar
  45. 45.
    Anpo M (2004) Bull Chem Soc Japan 77:1427–1442CrossRefGoogle Scholar
  46. 46.
    Iketani K, Sun R-D, Toki M, Hirota K, Yamaguchi O (2004) Mater Sci Eng B: Solid-State Mater Adv Technol 108:187–193Google Scholar
  47. 47.
    Martin ST, Morrison CL, Hoffmann MR (1994) J Phys Chem 98:13695–13704CrossRefGoogle Scholar
  48. 48.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349–6353CrossRefGoogle Scholar
  49. 49.
    Vorontsov AV, Dubovitskaya VP (2004) J Catal 221:102–109CrossRefGoogle Scholar
  50. 50.
    Wu JCS, Chen C (2004) J Photochem Photobiol A: Chem 163:509–515CrossRefGoogle Scholar
  51. 51.
    Nozik AJ (1993) In: Ollis DF, Al-Ekabi H (eds) Photocatalytic purification and treatment of water and Air [M]. Elsevier, Amsterdam, p 391Google Scholar
  52. 52.
    Martin ST, Herrmann H, Choi WY, Hoffmann MR (1994) Faraday Trans 90:3315–3323CrossRefGoogle Scholar
  53. 53.
    Lever ABP (1984) Inorganic electronic spectra. Elsevier, Amsterdam, p 480Google Scholar
  54. 54.
    Lin J, Yu JC, Lo D, Lam SK (1999) J Catal 183:368–372CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringKey Laboratory of Chemometrics & Chemical Biological Sensing Technologies, Ministry of Education, Hunan UniversityChangshaChina
  2. 2.Department of Chemical and Biological EngineeringState University of New York at BuffaloAmherstUSA

Personalised recommendations