Catalysis Letters

, Volume 129, Issue 3–4, pp 293–302 | Cite as

Characterization of ZnAl2O4 Obtained by Different Methods and Used as Catalytic Support of Pt

  • Adriana D. Ballarini
  • Sonia A. Bocanegra
  • Alberto A. Castro
  • Sergio R. de Miguel
  • Osvaldo A. Scelza


In this work the synthesis of a ZnAl2O4 spinel to be used as a support of metals and its characterization were studied. The methods used for the ZnAl2O4 preparation were: ceramic method (CM), mechanochemical synthesis in humid medium (HMS) and coprecipitation (COPR). ZnAl2O4 CM and ZnAl2O4 HMS showed negligible acidity, but the ZnAl2O4 COPR displayed a low acidity. The spinels obtained by COPR and HMS showed higher specific surface area and pore volumes than that prepared by the ceramic method. In addition the catalytic performance of Pt supported on the prepared spinel was evaluated in the n-butane dehydrogenation reaction. The Pt catalysts prepared with ZnAl2O4 COPR presented better activity and selectivity to olefins than the ones prepared with ZnAl2O4 HMS and ZnAl2O4 CM, which could be correlated with a higher metallic dispersion and lower particle sizes, detected by TEM. The acidity of ZnAl2O4 COPR, observed by isopropanol dehydration and TPD of pyridine, and the sequence of specific surface areas of the different spinels (ZnAl2O4 COPR > ZnAl2O4 HMS > ZnAl2O4 CM) are other important factors to define the final dispersion of the catalysts.


Synthesis of ZnAl2O4 support High-energy ball milling Platinum catalysts supported on ZnAl2O4 Catalysts preparation and characterization 



Authors thank Miguel A. Torres for the experimental assistance, to Dra. Silvana A. D’Ippolito for TPD of pyridine experiments and to M. J. Yañez (CCT-Bahía Blanca) for TEM measurements. Besides, this work was made with the financial support of Universidad Nacional del Litoral and CONICET—Argentina.


  1. 1.
    Vicenzini P (ed) (1987) High tech ceramics. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Phani AR, Passacantando M, Santucci S (2001) Mater Chem Phys 68:66–71CrossRefGoogle Scholar
  3. 3.
    van der Laag NJ, Snel MD, Magusin PC, de With G (2004) J Eur Ceram Soc 24:2417–2424CrossRefGoogle Scholar
  4. 4.
    Qivastar Inc. Ridgeerest, CA, and Hugest Space Communication Co, El Segundo; CA, US Patent No 5820669, 13 October 1998Google Scholar
  5. 5.
    Zawadzki M (2006) Solid State Sci 8:14–18CrossRefGoogle Scholar
  6. 6.
    Valenzuela M, Jacobs J, Bosch P, Reijne S, Zapata B, Brongersma H (1997) Appl Catal A: Gen 148:315–324CrossRefGoogle Scholar
  7. 7.
    Valenzuela MA (1990) Thesis, ESIQIE-IPN, MéxicoGoogle Scholar
  8. 8.
    Strohmeier B, Hercules D (1984) J Catal 8:266–279CrossRefGoogle Scholar
  9. 9.
    Ganesh I, Srinivas B, Saha B, Johnson R, Mahajan Y (2004) J Eur Ceram Soc 24:201–207CrossRefGoogle Scholar
  10. 10.
    Zdujié MV, Milosevié OB (1992) Mater Lett 13:125–129CrossRefGoogle Scholar
  11. 11.
    Domanski D, Urretavizcaya G, Castro F, Gennari F (2004) J Am Ceram Soc 87:2020–2024Google Scholar
  12. 12.
    Kong LB, Huang JM (2002) Mater Lett 56:238–243Google Scholar
  13. 13.
    El-Nabharawy T, Attia A, Alaya M (1995) Mater Lett 24:319–325CrossRefGoogle Scholar
  14. 14.
    Aguilar-Rios G, Valenzuela MA (1992) Appl Catal A: Gen 90:25–34CrossRefGoogle Scholar
  15. 15.
    Armendariz H, Guzmán A, Toledo A, Llanos M, Vazquez A, Aguilar G (2000) In: Morfao J, Faria J, Figueiredo J (eds) Proc. XVII Iberoamerican symposium of catalysis. Porto, pp 105–114Google Scholar
  16. 16.
    Li JG, Ikegami T, Lee J, Mori T, Yamija Y (2001) Ceram Int 27:481–489CrossRefGoogle Scholar
  17. 17.
    Li J, Ikegami T, Lee J, Mori T, Yajima Y (2001) J Eur Ceram Soc 21:139–148CrossRefGoogle Scholar
  18. 18.
    Guo J, Lou H, Wang X, Zheng X (2004) Mater Lett 58:1920–1923CrossRefGoogle Scholar
  19. 19.
    Chen L, Sun X (2004) J Alloys Compd 376:257–261CrossRefGoogle Scholar
  20. 20.
    Wu Y, Du J, Leong Choy K, Hench L, Guo J (2005) J Thin Solid Film 472:150–156CrossRefGoogle Scholar
  21. 21.
    Monrós G, Tena J (1995) J Mater Chem 5:85–90Google Scholar
  22. 22.
    Wrzyszcz J, Zawadzki M (2002) J Mol Catal A: Chem 189:203–210CrossRefGoogle Scholar
  23. 23.
    Zawadzki M, Mista W, Kepinski L (2001) Vacuum 63:291–296CrossRefGoogle Scholar
  24. 24.
    Chen Z, Shi E (2002) Mater Lett 56:601–605CrossRefGoogle Scholar
  25. 25.
    Yang CC, Chen SY, Cheng SY (2004) Powder Technol 148:3–6CrossRefGoogle Scholar
  26. 26.
    Mimani T (2001) J Alloys Compd 315:123–128CrossRefGoogle Scholar
  27. 27.
    Li Z, Zhang S, Lee W (2007) J Eur Ceram Soc 27:3407–3412CrossRefGoogle Scholar
  28. 28.
    Pines H, Haag W (1960) J Am Chem Soc 82:2471–2478CrossRefGoogle Scholar
  29. 29.
    Pakhomov NA, Buyanov RA (1995) Stud Surf Sci Catal 91:1101–1110CrossRefGoogle Scholar
  30. 30.
    Armendariz H, Guzman A, Toledo J, Llanos M, Vazquez A, Aguilar-Rios G (2001) Appl Catal A 211:69–80CrossRefGoogle Scholar
  31. 31.
    Barroso M, Gomez M, Andrade Gamboa J, Arrúa L, Abello M (2006) J Phys Chem Solids 67:1583–1589CrossRefGoogle Scholar
  32. 32.
    Ye G, Troczynski T (2006) Ceram Int 32:257–262CrossRefGoogle Scholar
  33. 33.
    Bocanegra S, Castro A, Guerrero-Ruiz A, Scelza O, de Miguel A (2006) Chem Ing J 118:161–166Google Scholar
  34. 34.
    de Miguel S, Bocanegra S, Vilella IJ, Guerrero-Ruiz A, Scelza O (2007) Catal Lett 119:5–15CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Adriana D. Ballarini
    • 1
  • Sonia A. Bocanegra
    • 1
  • Alberto A. Castro
    • 1
  • Sergio R. de Miguel
    • 1
  • Osvaldo A. Scelza
    • 1
  1. 1.Facultad de Ingeniería QuímicaInstituto de Investigaciones en Catálisis y Petroquímica (INCAPE)-(Universidad Nacional del Litoral)-CONICETSanta FeArgentina

Personalised recommendations