Catalysis Letters

, Volume 129, Issue 3–4, pp 281–286 | Cite as

Microwave Assisted Green Synthesis of Long-chain 1-Alkylimidazoles and Medium-chain 1-alkyl-2-Methylimidazoles with Antiviral Properties Catalyzed by Basic Carbons

  • V. Calvino-Casilda
  • R. M. Martín-Aranda
  • A. J. López-Peinado


Long-chain 1-alkylimidazoles and medium-chain 1-alkyl-2-methylimidazoles have been prepared by conventional thermal activation, in a batch reactor system, and microwave activation using alkaline promoted carbons, Na-Norit, Cs-Norit and NaCs-Norit in absence of any solvent. Till now some authors had reported the synthesis of medium-chain 1-alkylimidazoles with antiviral properties using other basic media. Under the experimental conditions, 1-nonylimidazole, 1-dodecylimidazole, 1-butyl-2-methylimidazole and 1-hexyl-2-methylimidazole can be prepared with a high conversion and selectivity. The physicochemical characterization of the carbon catalysts was carried out by thermal analysis, nitrogen adsorption, X-ray photoelectron spectroscopy and Knoevenagel condensation as a probe reaction. Most of the basic sites in the promoted carbons have strength in the range 9 ≤ pK a ≤ 16.5 that convert them in appropriate catalysts able to abstract the proton of imidazolic rings to be attacked by alkylhalides.


Long-chain 1-alkylimidazoles and medium-chain 1-alkyl-2-methylimidazoles Basic carbons Microwave irradiation Green chemistry 


  1. 1.
    Poliakoff M, Licence P (2007) Nature 450:810CrossRefGoogle Scholar
  2. 2.
    Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley, WeinheimCrossRefGoogle Scholar
  3. 3.
    Calvino-Casilda V, López-Peinado AJ, Fierro JLG, Martín-Aranda RM (2003) App Catal Gen 240:287CrossRefGoogle Scholar
  4. 4.
    Calvino-Casilda V, López-Peinado AJ, Martín-Aranda RM, Ferrera-Escudero S, Durán-Valle CJ (2004) Carbon 42:1357CrossRefGoogle Scholar
  5. 5.
    Costarrosa L, Calvino-Casilda V, Ferrera-Escudero S, Durán-Valle CJ, Martín-Aranda RM (2006) Appl Surf Sci 252:6089CrossRefGoogle Scholar
  6. 6.
    Khabnadideh S, Rezaei Z, Khalafi-Nezhad A, Bahrinajafi R, Mohamadi R, Farrokhroz AA (2003) Biiorg Med Chem Lett 13:2863CrossRefGoogle Scholar
  7. 7.
    de López-González D, López-Peinado AJ, Martín-Aranda RM, Rojas-Cervantes ML (1993) Carbon 31:1231CrossRefGoogle Scholar
  8. 8.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1978) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden PrairieGoogle Scholar
  9. 9.
    Ono Y (1993) Cattech 1:31Google Scholar
  10. 10.
    Bruice TC, Schmir GL (1958) J Am Chem Soc 80:148CrossRefGoogle Scholar
  11. 11.
    Polaert I, Estel L, Ledoux A (2005) Chem Eng Sci 60:6354CrossRefGoogle Scholar
  12. 12.
    Budarin VL, Clark JH, Tavener SJ, Wilson K (2004) Chem Commun 23:2736–2737CrossRefGoogle Scholar
  13. 13.
    Vaydhyanathan B, Munia G, Rao K (1996) J Mater Chem 6:391CrossRefGoogle Scholar
  14. 14.
    Mingos DMP, Barghurst DR (1991) Chem Soc Rev 20:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • V. Calvino-Casilda
    • 1
  • R. M. Martín-Aranda
    • 1
  • A. J. López-Peinado
    • 1
  1. 1.Departamento de Química Inorgánica y Química TécnicaUniversidad Nacional de Educación a Distancia (UNED)MadridSpain

Personalised recommendations