Catalysis Letters

, Volume 129, Issue 1–2, pp 233–239 | Cite as

Effect of Calcination Temperature on the Activity and Cobalt Crystallite Size of Fischer–Tropsch Co–Ru–Zr/SiO2 Catalyst

  • Sang-Hoon Song
  • Sang-Bong Lee
  • Jong Wook Bae
  • P. S. Sai Prasad
  • Ki-Won Jun
  • Yong-Gun Shul


A series of Co–Ru–Zr/SiO2 catalysts were prepared by the co-impregnation method in order to understand the effects of calcination temperature on their activity and stability. The crystallite size of cobalt obtained from H2 chemisorption decreased up to a calcination temperature of 300 °C and then increased to reach a reasonably constant value. The activity for CO hydrogenation also increased upto this temperature and then decreased to be stabilized finally at a value smaller than the optimum one. The turn-over frequency values are not significantly altered on the catalysts calcined above 220 °C. It was observed that in the presence of chlorine released during the decomposition of the zirconium oxychloride precursor, the dispersion of cobalt crystallites was altered due to the different environment of chlorine and water evolved during the reduction step.


Rutheniu Zirconium oxychloride SiO2 Cobalt Fischer–Tropsch synthesis Calcination temperature 



The authors would like to acknowledge the financial support of KEMCO and GTL Technology Development Consortium (Korea National Oil Corp., Daelim Industrial Co., LTD, Doosan Mecatec Co., LTD, Hyundai Engineering Co. LTD and SK Energy Co. LTD) under “Energy & Resources Technology Development Programs” of the Ministry of Knowledge Economy, Republic of Korea. P.S. Sai Prasad thanks the Director IICT, Hyderabad, for granting him the sabbatical leave to proceed on the Brain Pool Fellowship in Korea.


  1. 1.
    Zhang JL, Chen JG, Ren J, Sun YH (2003) Appl Catal A 243:121CrossRefGoogle Scholar
  2. 2.
    Li JL, Jacobs G, Das T, Zhang YQ, Davis BH (2002) Appl Catal A 236:67CrossRefGoogle Scholar
  3. 3.
    Reinikainen M, Niemela MK, Kakuta N, Suhonen S (1998) Appl Catal A 174:61CrossRefGoogle Scholar
  4. 4.
    Iglesia E, Soled SL, Fiato RA, Via GH (1993) J Catal 143:345CrossRefGoogle Scholar
  5. 5.
    Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) J Catal 156:85CrossRefGoogle Scholar
  6. 6.
    Li JL, Zhan XD, Zhang YQ, Jacobs G, Das T, Davis BH (2002) Appl Catal A 228:203CrossRefGoogle Scholar
  7. 7.
    Storsaeter S, Botdal B, Walmsley JC, Tanem BS, Holmen A (2005) J Catal 236:139CrossRefGoogle Scholar
  8. 8.
    Xu D, Li W, Duan H, Ge Q, Xu H (2005) Catal Lett 102(3–4):229CrossRefGoogle Scholar
  9. 9.
    Kogelbauer A, Goodwin JG, Oukaci R (1996) J Catal 160:125CrossRefGoogle Scholar
  10. 10.
    Oukaci R, Singleton AH, Goodwin JG Jr (1999) Appl Catal A 186:129CrossRefGoogle Scholar
  11. 11.
    Jongsomjit B, Panpranot J, Goodwin JG (2001) J Catal 204:98CrossRefGoogle Scholar
  12. 12.
    Tsubaki N, Sun S, Fujimoto K (2001) J Catal 199:236CrossRefGoogle Scholar
  13. 13.
    Zsoldos Z, Hoffer T, Guczi L (1991) J Phys Chem B 95:795Google Scholar
  14. 14.
    Song SH, Lee SB, Bae JW, Sai Prasad PS, Jun KW (2008) Catal Commun 9(13):2282CrossRefGoogle Scholar
  15. 15.
    Rathousky J, Zukal A, Lapidus A, Krylova A (1991) Appl Catal 79:167CrossRefGoogle Scholar
  16. 16.
    Belambe AR, Oukaci R, Goodwin JG Jr (1997) J Catal 166:8CrossRefGoogle Scholar
  17. 17.
    Calleja G, Lucas A, Grieken RV (1991) Appl Catal 68:11CrossRefGoogle Scholar
  18. 18.
    Lapidus A, Krylova A, Kazanskii V, Borovkov V, Rathousky J, Zukal A, Janacalkova M (1991) Appl Catal 73:65CrossRefGoogle Scholar
  19. 19.
    Lapidus A, Krylova A, Rathousky J, Zukal A, Jancalkova M (1992) Appl Catal 80:1CrossRefGoogle Scholar
  20. 20.
    Lira E, Lopez CM, Oropeza F, Bartolini M, Alvarez J, Goldwasser M, Linares FL, Lamonier JF, Perez Zurita MJ (2008) J Mol Catal A 281:146CrossRefGoogle Scholar
  21. 21.
    Jablonski JM, Okal J, Potocza-Petru D, Krajczyk L (2003) J Catal 220:146CrossRefGoogle Scholar
  22. 22.
    Gjervan T, Prestvik R, Totdal B, Lyman CE, Holmen A (2001) Catal Today 65:163CrossRefGoogle Scholar
  23. 23.
    Birgersson H, Boytonnet M, Klingstedt F, Murzin DY, Stefanov P, Naydenov A (2006) Appl Catal B 65:93CrossRefGoogle Scholar
  24. 24.
    Bae JW, Lee YJ, Park JY, Jun KW (2008) Energy Fuels 22:2885CrossRefGoogle Scholar
  25. 25.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692CrossRefGoogle Scholar
  26. 26.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Jos van Dillen A, de Jong KP (2006) J Am Chem Soc 128:3956CrossRefGoogle Scholar
  27. 27.
    Enache DI, Roy-Auberger M, Revel R (2004) Appl Catal A 268:51CrossRefGoogle Scholar
  28. 28.
    Reuel RC, Bartholomew CH (1984) J Catal 85:63CrossRefGoogle Scholar
  29. 29.
    Chin RL, Hercules DM (1982) J Phys Chem B 86:360CrossRefGoogle Scholar
  30. 30.
    Arnoldy P, Moulijn JA (1985) J Catal 93:38CrossRefGoogle Scholar
  31. 31.
    Enache DI, Rebours B, Roy-Auberger M, Revel R (2002) J Catal 205:346CrossRefGoogle Scholar
  32. 32.
    Song D, Li J, Cai Q (2007) J Phys Chem C 111:18970CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sang-Hoon Song
    • 1
    • 2
  • Sang-Bong Lee
    • 1
  • Jong Wook Bae
    • 1
  • P. S. Sai Prasad
    • 1
  • Ki-Won Jun
    • 1
  • Yong-Gun Shul
    • 2
  1. 1.Alternative Chemicals/Fuel Research CenterKorea Research Institute of Chemical Technology (KRICT)Yuseong, DaejeonSouth Korea
  2. 2.Department of Chemical EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations