Skip to main content
Log in

Effect of Calcination Temperature of Kaolin Microspheres on the In situ Synthesis of ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

ZSM-5 zeolite has been successfully synthesized in-situ on calcined kaolin microspheres by the hydrothermal method using n-butylamine as a template. The supported ZSM-5 was characterized by X-ray diffraction and scanning electron microscopy. The effect of calcination temperature of kaolin microspheres on the in-situ synthesis of ZSM-5 was investigated. The influence of the pretreatment temperature on the properties of kaolin microspheres including phase transformation, amounts of active SiO2 and Al2O3, and pore structures, was studied using fourier transform infrared (FT-IR), nitrogen adsorption and chemical analysis. The results showed that when the calcination temperature increased from 300 to 900 °C, the amount of active SiO2 in the kaolin microspheres increased slightly and the amount of active Al2O3 initially increased rapidly and then decreased steadily. The surface area and pore volume of the kaolin calcined at both low and high temperatures was less than those of kaolin calcined at a medium temperature. The property changes of kaolin caused the relative crystallinity of in situ synthesized ZSM-5 to vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Active SiO2 in CKM originated from kaolin and silica binder.

References

  1. Degnan TF, Chitnis GK, Schipper PH (2000) Microporous Mesoporous Mater 35–36:245

    Article  Google Scholar 

  2. Abul-Hamayel MA, Aitani AM, Saeed MR (2005) Chem Eng Technol 28:923

    Article  CAS  Google Scholar 

  3. Dwyer FG, Schwartz AB (1978) US patent 4091007

  4. Chu P, Pasquale GM (1985) US patent 4522705

  5. Rosinski EJ, Chu P, West AH (1985) EP 0156595A2

  6. McWilliams JP, Woodbury NJ (1992) US patent 5145659

  7. Xu M, Macaoay J (2005) US patent 0181933

  8. Sun SH, Ma JT, Pang XM, Gao XH, Song MF (2006) J Chin Ceram Soc 34:757

    CAS  Google Scholar 

  9. Sun SH, Ma JT, Gao XH (2007) Clay Miner 42:203

    Article  CAS  Google Scholar 

  10. Haden WL Jr, Dzierzanowski FJ (1972) US patent 3663165

  11. Dight LB, Leskowicz MA, Bogert DC (1989) EP 0369629

  12. Zheng SQ, Chang XP, Gao XH (2002) Non-Met Mines 25:5

    CAS  Google Scholar 

  13. Feng H, Li CY, Shan HH, Appl Clay Sci. doi:10.1016/j.clay.2008.05.004

  14. Rocha J, Klinowski J (1990) J Angew Chem 102:539

    Article  CAS  Google Scholar 

  15. Kakali G, Perraki T, Tsivilis S, Badogiannis E (2001) Appl Clay Sci 20:73

    Article  CAS  Google Scholar 

  16. Alkan M, Hopa C, Yilmaz Z, Guler H (2005) Microporous Mesoporous Mater 86:176

    Article  CAS  Google Scholar 

  17. Lambert JF, Millman WS, Fripiat JJ (1989) J Am Chem Soc 111:3517

    Article  CAS  Google Scholar 

  18. Akolekar D, Chaffee A, Howe RF (1997) Zeolite 19:359

    Article  CAS  Google Scholar 

  19. Chen GH, Liang HD (2005) J Foushan Ceram 107:9

    Google Scholar 

  20. Xu RR, Pang WQ, Yu JH, Huo QS, Chen JS (2004) Molecular sieves and porous materials chemistry. Science Press, Beijing

    Google Scholar 

  21. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powdors and porous solids principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  22. Zheng SQ, Wang ZF, Tan ZG, Gao XH, Xu XL (2006) Pet Technol & App 24:104

    CAS  Google Scholar 

  23. Sang SY, Chang FX, Liu ZM, He CQ, He YL, Xu L (2004) Catal Today 93–94:729

    Article  Google Scholar 

  24. Shen JH, Mao XW, Yuan SL, Zhang YM (1996) Acta Petrolei Sin (Pet Process Sec) 12:20

    CAS  Google Scholar 

  25. Madani A, Aznar A, Sanz J, Serratosa JM (1990) J Phys Chem 94:760

    Article  CAS  Google Scholar 

  26. Ma ZL, Zhao TB, Zong BN (2004) Acta Petrolei Sin (Pet Process Sec) 20:21

    Google Scholar 

  27. Chandrasekhar S, Pramada PN (2004) Appl Clay Sci 27:187

    Article  CAS  Google Scholar 

  28. Markovic S, Dondur V, Dimitrijevic R (2003) J Mol Struct 654:223

    Article  CAS  Google Scholar 

  29. Johnston CT, Bish DL, Eckert J, Brown L (2000) J Phys Chem B 104:8080

    Article  CAS  Google Scholar 

  30. Yariv S, Lapides I, Michaelian KH, Lahav N (1999) J Them Anal Calorim 56:865

    Article  CAS  Google Scholar 

  31. Saikia NJ, Bharali DJ, Sengupta P, Bordoloi D, Goswamee RL, Saikia PC, Borthakur PC (2003) Appl Clay Sci 24:93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by Petrochina Company under cooperative agreement 040806-01-00. The authors thank the Instrument Anaylisi Center at China University of Petroleum for the XRD, BET and FT-IR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, H., Li, C. & Shan, H. Effect of Calcination Temperature of Kaolin Microspheres on the In situ Synthesis of ZSM-5. Catal Lett 129, 71–78 (2009). https://doi.org/10.1007/s10562-008-9794-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9794-9

Keywords

Navigation