Catalysis Letters

, Volume 129, Issue 1–2, pp 71–78 | Cite as

Effect of Calcination Temperature of Kaolin Microspheres on the In situ Synthesis of ZSM-5

  • Hui Feng
  • Chunyi Li
  • Honghong Shan


ZSM-5 zeolite has been successfully synthesized in-situ on calcined kaolin microspheres by the hydrothermal method using n-butylamine as a template. The supported ZSM-5 was characterized by X-ray diffraction and scanning electron microscopy. The effect of calcination temperature of kaolin microspheres on the in-situ synthesis of ZSM-5 was investigated. The influence of the pretreatment temperature on the properties of kaolin microspheres including phase transformation, amounts of active SiO2 and Al2O3, and pore structures, was studied using fourier transform infrared (FT-IR), nitrogen adsorption and chemical analysis. The results showed that when the calcination temperature increased from 300 to 900 °C, the amount of active SiO2 in the kaolin microspheres increased slightly and the amount of active Al2O3 initially increased rapidly and then decreased steadily. The surface area and pore volume of the kaolin calcined at both low and high temperatures was less than those of kaolin calcined at a medium temperature. The property changes of kaolin caused the relative crystallinity of in situ synthesized ZSM-5 to vary.


Calcination temperature Kaolin microspheres In situ synthesis ZSM-5 



Financial support was provided by Petrochina Company under cooperative agreement 040806-01-00. The authors thank the Instrument Anaylisi Center at China University of Petroleum for the XRD, BET and FT-IR analysis.


  1. 1.
    Degnan TF, Chitnis GK, Schipper PH (2000) Microporous Mesoporous Mater 35–36:245CrossRefGoogle Scholar
  2. 2.
    Abul-Hamayel MA, Aitani AM, Saeed MR (2005) Chem Eng Technol 28:923CrossRefGoogle Scholar
  3. 3.
    Dwyer FG, Schwartz AB (1978) US patent 4091007Google Scholar
  4. 4.
    Chu P, Pasquale GM (1985) US patent 4522705Google Scholar
  5. 5.
    Rosinski EJ, Chu P, West AH (1985) EP 0156595A2Google Scholar
  6. 6.
    McWilliams JP, Woodbury NJ (1992) US patent 5145659Google Scholar
  7. 7.
    Xu M, Macaoay J (2005) US patent 0181933Google Scholar
  8. 8.
    Sun SH, Ma JT, Pang XM, Gao XH, Song MF (2006) J Chin Ceram Soc 34:757Google Scholar
  9. 9.
    Sun SH, Ma JT, Gao XH (2007) Clay Miner 42:203CrossRefGoogle Scholar
  10. 10.
    Haden WL Jr, Dzierzanowski FJ (1972) US patent 3663165Google Scholar
  11. 11.
    Dight LB, Leskowicz MA, Bogert DC (1989) EP 0369629Google Scholar
  12. 12.
    Zheng SQ, Chang XP, Gao XH (2002) Non-Met Mines 25:5Google Scholar
  13. 13.
    Feng H, Li CY, Shan HH, Appl Clay Sci. doi: 10.1016/j.clay.2008.05.004
  14. 14.
    Rocha J, Klinowski J (1990) J Angew Chem 102:539CrossRefGoogle Scholar
  15. 15.
    Kakali G, Perraki T, Tsivilis S, Badogiannis E (2001) Appl Clay Sci 20:73CrossRefGoogle Scholar
  16. 16.
    Alkan M, Hopa C, Yilmaz Z, Guler H (2005) Microporous Mesoporous Mater 86:176CrossRefGoogle Scholar
  17. 17.
    Lambert JF, Millman WS, Fripiat JJ (1989) J Am Chem Soc 111:3517CrossRefGoogle Scholar
  18. 18.
    Akolekar D, Chaffee A, Howe RF (1997) Zeolite 19:359CrossRefGoogle Scholar
  19. 19.
    Chen GH, Liang HD (2005) J Foushan Ceram 107:9Google Scholar
  20. 20.
    Xu RR, Pang WQ, Yu JH, Huo QS, Chen JS (2004) Molecular sieves and porous materials chemistry. Science Press, BeijingGoogle Scholar
  21. 21.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powdors and porous solids principles, methodology and applications. Academic Press, San DiegoGoogle Scholar
  22. 22.
    Zheng SQ, Wang ZF, Tan ZG, Gao XH, Xu XL (2006) Pet Technol & App 24:104Google Scholar
  23. 23.
    Sang SY, Chang FX, Liu ZM, He CQ, He YL, Xu L (2004) Catal Today 93–94:729CrossRefGoogle Scholar
  24. 24.
    Shen JH, Mao XW, Yuan SL, Zhang YM (1996) Acta Petrolei Sin (Pet Process Sec) 12:20Google Scholar
  25. 25.
    Madani A, Aznar A, Sanz J, Serratosa JM (1990) J Phys Chem 94:760CrossRefGoogle Scholar
  26. 26.
    Ma ZL, Zhao TB, Zong BN (2004) Acta Petrolei Sin (Pet Process Sec) 20:21Google Scholar
  27. 27.
    Chandrasekhar S, Pramada PN (2004) Appl Clay Sci 27:187CrossRefGoogle Scholar
  28. 28.
    Markovic S, Dondur V, Dimitrijevic R (2003) J Mol Struct 654:223CrossRefGoogle Scholar
  29. 29.
    Johnston CT, Bish DL, Eckert J, Brown L (2000) J Phys Chem B 104:8080CrossRefGoogle Scholar
  30. 30.
    Yariv S, Lapides I, Michaelian KH, Lahav N (1999) J Them Anal Calorim 56:865CrossRefGoogle Scholar
  31. 31.
    Saikia NJ, Bharali DJ, Sengupta P, Bordoloi D, Goswamee RL, Saikia PC, Borthakur PC (2003) Appl Clay Sci 24:93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumDongyingChina
  2. 2.Chemical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations