Advertisement

Catalysis Letters

, Volume 128, Issue 3–4, pp 313–317 | Cite as

A Possible Mechanism of Hydrogen Reverse Spillover in Platinum-Zeolite Catalysts

  • M. N. Mikhailov
  • I. V. Mishin
  • L. M. Kustov
Article

Abstract

Quantum chemical methods (X3LYP and MP2) were applied to investigate the structure and reactivity of anion-radical site in HZSM-5 zeolite. The interaction of hydrogen zeolite with a platinum particle can involve electron transfer to a Brønsted acid site to form an anion-radical fragment. A low stability of the latter favors the elimination of atomic hydrogen from the OH-group, an exothermic process with low activation energy. In the metal-zeolite catalysts, the anion-radical fragment formed due to withdrawal of electronic density from the metal particle can be responsible for the reverse spillover of Brønsted hydrogen onto the metal surface.

Keywords

Brønsted acid site Electron transfer Anion-radical site Hydrogen elimination 

Notes

Acknowledgments

The authors gratefully acknowledge the critical reading of the manuscript by Dr. Walter H. Niehoff.

References

  1. 1.
    Weisz PB, Swegler EW (1957) Science 126:31CrossRefGoogle Scholar
  2. 2.
    Kuhlmann A, Rössner F, Schwieger W, Gravenhorst O, Selvam T (2004) Catal Today 97:303CrossRefGoogle Scholar
  3. 3.
    Ono Y (2003) Catal Today 81:3CrossRefGoogle Scholar
  4. 4.
    Steinberg K-H, Hofmann F, Bremer H, Dmitriev RV, Detjuk AN, Minachev KhM (1979) Z Chem 19:34Google Scholar
  5. 5.
    Minachev KhM, Dmitriev RV, Detyuk AN, Steinberg K-H, Bremer H (1978) Bull Acad Sci USSR Div Chem Sci 27:2394CrossRefGoogle Scholar
  6. 6.
    Mikhailov MN, Kustov LM, Kazansky VB (2008) Catal Lett 120:8CrossRefGoogle Scholar
  7. 7.
    Mikhailov MN, Mishin IV, Kustov LM, Microporous Mesoporous Mater. doi  10.1016/j.micromeso.2008.08.014
  8. 8.
    Mikhailov MN, Mishin IV, Kustov LM, Mordkovich VZ (2009) Catal Today (in press)Google Scholar
  9. 9.
    Mikhailov MN, Kustov LM, Mordkovich VZ, Stakheev AYu (2008) Russ Chem Bull 57 (in press)Google Scholar
  10. 10.
    Kramer GJ, van Santen RA (1993) J Am Chem Soc 115:2887CrossRefGoogle Scholar
  11. 11.
    Brand HV, Curtiss LA, Iton LE (1993) J Phys Chem 97:12773CrossRefGoogle Scholar
  12. 12.
    Brand HV, Curtiss LA, Iton LE (1992) J Phys Chem 96:7725CrossRefGoogle Scholar
  13. 13.
    Redondo A, Hay PJ (1993) J Phys Chem 97:11754CrossRefGoogle Scholar
  14. 14.
    Xu X, Zhang Q, Muller RP, Goddard WAIII (2005) J Chem Phys 122:014105CrossRefGoogle Scholar
  15. 15.
    Schmidt MW, Baldridge KK, Boatz JA et al (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  16. 16.
    Granovsky AA, PC GAMESS version 7.1. http://classic.chem.msu.su/gran/gamess/index.html
  17. 17.
    Yuan SP, Wang JG, Li YW, Jiao H (2002) J Phys Chem A 106:8167CrossRefGoogle Scholar
  18. 18.
    Barone G, Casella G, Giuffrida S, Duca D (2007) J Phys Chem C 111:13033CrossRefGoogle Scholar
  19. 19.
    Slinkin AA, Kucherov AV, Kondratyev DA, Bondarenko TN, Rubinstein AM, Minachev KhM (1986) J Mol Catal 35:97CrossRefGoogle Scholar
  20. 20.
    Kucherov AV, Slinkin AA, Kondratyev DA, Bondarenko TN, Rubinstein AM, Minachev KhM (1986) J Mol Catal 37:107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. N. Mikhailov
    • 1
  • I. V. Mishin
    • 1
  • L. M. Kustov
    • 1
  1. 1.N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesRussian FederationMoscowRussia

Personalised recommendations