Catalysis Letters

, 128:373 | Cite as

Surface Acidic and Redox Properties of V–Ag–O/TiO2 Catalysts for the Selective Oxidation of Toluene to Benzaldehyde

  • Mingwei Xue
  • Jia’nan Yu
  • Hui Chen
  • Jianyi Shen


Previous work showed that the V–Ag–O complex oxides exhibited quite good catalytic behavior for the selective oxidation of toluene to benzaldehyde. In this work, TiO2 was added into V–Ag–O by co-precipitation with a sol–gel method. Structural characterizations using X-ray diffraction and Fourier transform infrared spectroscopy indicated the phases of Ag2V4O11, Ag1.2V3O8 and TiO2 in the V–Ag–O/TiO2 before the reaction. No complex oxide phases involving titanium were observed. Thus, the addition of TiO2 seemed to generate the interfaces between TiO2 and the silver vanadates. The Ag2V4O11 and part of Ag1.2V3O8 were converted into Ag0.68V2O5 and metallic Ag during the reaction. The results of temperature programmed reduction, microcalorimetric adsorption of NH3 and isopropanol probe reaction in air revealed that the addition of TiO2 might increase both the surface acidity and redox ability of the catalysts. The increased redox ability seemed to improve the activity for the oxidation of toluene, but the increased surface acidity might lead to the decrease of selectivity to benzaldehyde. The V–Ag–O/TiO2 with 20% TiO2 exhibited significantly improved catalytic behavior for the selective oxidation of toluene to benzaldehyde, as compared to the un-promoted V–Ag–O catalyst. The conversion of toluene reached 7.3% over the V–Ag–O/20%TiO2 at 613 K with 95% selectivity to benzaldehyde.


V–Ag–O complex oxide catalysts Silver vanadates TiO2 support Selective oxidation of toluene to benzaldehyde Surface acidity Redox ability 



Financial supports from NSFC (20233040 and 20673055), MSTC (2005CB221400) and Jiangsu Province, China (BG2006031) are acknowledged.


  1. 1.
    Bazier M (1980) J Appl Electrochem 10:285CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Ge X, Zhang HL, Fan J (1998) Chin J Catal 19:42Google Scholar
  4. 4.
    Kuang WX, Fan YN, Chen KD, Chen Y (1999) J Catal 186:310CrossRefGoogle Scholar
  5. 5.
    Centi G, Perathoner S, Tonini S (2000) Catal Today 61:211CrossRefGoogle Scholar
  6. 6.
    Bulushev DA, Kiwi-Minsker L, Zaikovskii VI, Lapina OB, Ivanov AA, Reshetnikov SI, Renken A (2000) Appl Catal A 202:243CrossRefGoogle Scholar
  7. 7.
    Larrondo S, Barbaro A, Irigoyen B, Amadeo N (2001) Catal Today 64:179CrossRefGoogle Scholar
  8. 8.
    Konietzni F, Zanthoff HW, Maier WF (1999) J Catal 188:154CrossRefGoogle Scholar
  9. 9.
    Zhang HL, Zhong W, Duan X, Fu XC (1991) J Catal 129:426CrossRefGoogle Scholar
  10. 10.
    Xue MW, Ge JZ, Zhang HL, Shen JY (2007) Appl Catal A 330:117CrossRefGoogle Scholar
  11. 11.
    Brückner A (2000) Appl Catal A 200:287CrossRefGoogle Scholar
  12. 12.
    Shimizu N, Saito N, Ueshima M (1988) Stud Sur Sci Catal 44:131CrossRefGoogle Scholar
  13. 13.
    Bulushev DA, Kiwi-Minsker L, Zaikovskii VI, Renken A (2000) J Catal 193:145CrossRefGoogle Scholar
  14. 14.
    Bottino A, Capannelli G, Comite A, Felice RD (2005) Catal Today 99:171CrossRefGoogle Scholar
  15. 15.
    Ponzil M, Duschatzky C, Carrascull A, Ponzi E (1998) Appl Catal A 169:373CrossRefGoogle Scholar
  16. 16.
    Konietzni F, Kolb U, Dingerdissen U, Maier WF (1998) J Catal 176:527CrossRefGoogle Scholar
  17. 17.
    Zahedi-Niaki MH, Zaidi SMJ, Kaliaguine S (2000) Appl Catal A 196:9CrossRefGoogle Scholar
  18. 18.
    Liu XJ, Gu XD, Shen JY (2003) Chin J Catal 24:674Google Scholar
  19. 19.
    Iketani K, Sun R, Toki M, Hirota K, Yamaguchi O (2004) Mater Sci Eng B 108:187CrossRefGoogle Scholar
  20. 20.
    Bañares MA, Alemany LJ, Jiménez MC, Larrubia MA, Delgado F et al (1996) J Solid State Chem 124:69CrossRefGoogle Scholar
  21. 21.
    Barraclough CG, Lewis J, Nyholm RS (1959) J Chem Soc 3552Google Scholar
  22. 22.
    Leising RA, Thiebolt WCIII, Takeuchi ES (1994) Inorg Chem 33:5733CrossRefGoogle Scholar
  23. 23.
    Kawakita J, Katayama Y, Miura T, Kishi T (1997) Solid State Ionics 99:71CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Li CZ, Liu XH, Gu F, Jiang HB, Shao W, Zhang L, He Y (2007) Mater Lett 61:79CrossRefGoogle Scholar
  25. 25.
    Briand L, Gambaro L, Thomas H (1996) J Catal 161:839CrossRefGoogle Scholar
  26. 26.
    Sivakumar S, Pillai PK, Mukundan P, Warrier KGK (2002) Mater Lett 57:330CrossRefGoogle Scholar
  27. 27.
    Ge X, Zhang HL (1998) J Solid State Chem 141:186CrossRefGoogle Scholar
  28. 28.
    Li MS, Shen JY (2002) J Catal 205:248CrossRefGoogle Scholar
  29. 29.
    Kiwi-Minsker L, Bulushev DA, Rainone F, Renken A (2002) J Mol Catal A 184:223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mingwei Xue
    • 1
  • Jia’nan Yu
    • 1
  • Hui Chen
    • 1
  • Jianyi Shen
    • 1
  1. 1.Lab of Mesoscopic Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations