Skip to main content
Log in

Surface Acidic and Redox Properties of V–Ag–O/TiO2 Catalysts for the Selective Oxidation of Toluene to Benzaldehyde

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Previous work showed that the V–Ag–O complex oxides exhibited quite good catalytic behavior for the selective oxidation of toluene to benzaldehyde. In this work, TiO2 was added into V–Ag–O by co-precipitation with a sol–gel method. Structural characterizations using X-ray diffraction and Fourier transform infrared spectroscopy indicated the phases of Ag2V4O11, Ag1.2V3O8 and TiO2 in the V–Ag–O/TiO2 before the reaction. No complex oxide phases involving titanium were observed. Thus, the addition of TiO2 seemed to generate the interfaces between TiO2 and the silver vanadates. The Ag2V4O11 and part of Ag1.2V3O8 were converted into Ag0.68V2O5 and metallic Ag during the reaction. The results of temperature programmed reduction, microcalorimetric adsorption of NH3 and isopropanol probe reaction in air revealed that the addition of TiO2 might increase both the surface acidity and redox ability of the catalysts. The increased redox ability seemed to improve the activity for the oxidation of toluene, but the increased surface acidity might lead to the decrease of selectivity to benzaldehyde. The V–Ag–O/TiO2 with 20% TiO2 exhibited significantly improved catalytic behavior for the selective oxidation of toluene to benzaldehyde, as compared to the un-promoted V–Ag–O catalyst. The conversion of toluene reached 7.3% over the V–Ag–O/20%TiO2 at 613 K with 95% selectivity to benzaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bazier M (1980) J Appl Electrochem 10:285

    Article  Google Scholar 

  2. http://www.qrx.cn

  3. Ge X, Zhang HL, Fan J (1998) Chin J Catal 19:42

    CAS  Google Scholar 

  4. Kuang WX, Fan YN, Chen KD, Chen Y (1999) J Catal 186:310

    Article  CAS  Google Scholar 

  5. Centi G, Perathoner S, Tonini S (2000) Catal Today 61:211

    Article  CAS  Google Scholar 

  6. Bulushev DA, Kiwi-Minsker L, Zaikovskii VI, Lapina OB, Ivanov AA, Reshetnikov SI, Renken A (2000) Appl Catal A 202:243

    Article  CAS  Google Scholar 

  7. Larrondo S, Barbaro A, Irigoyen B, Amadeo N (2001) Catal Today 64:179

    Article  CAS  Google Scholar 

  8. Konietzni F, Zanthoff HW, Maier WF (1999) J Catal 188:154

    Article  CAS  Google Scholar 

  9. Zhang HL, Zhong W, Duan X, Fu XC (1991) J Catal 129:426

    Article  CAS  Google Scholar 

  10. Xue MW, Ge JZ, Zhang HL, Shen JY (2007) Appl Catal A 330:117

    Article  CAS  Google Scholar 

  11. Brückner A (2000) Appl Catal A 200:287

    Article  Google Scholar 

  12. Shimizu N, Saito N, Ueshima M (1988) Stud Sur Sci Catal 44:131

    Article  Google Scholar 

  13. Bulushev DA, Kiwi-Minsker L, Zaikovskii VI, Renken A (2000) J Catal 193:145

    Article  CAS  Google Scholar 

  14. Bottino A, Capannelli G, Comite A, Felice RD (2005) Catal Today 99:171

    Article  CAS  Google Scholar 

  15. Ponzil M, Duschatzky C, Carrascull A, Ponzi E (1998) Appl Catal A 169:373

    Article  Google Scholar 

  16. Konietzni F, Kolb U, Dingerdissen U, Maier WF (1998) J Catal 176:527

    Article  CAS  Google Scholar 

  17. Zahedi-Niaki MH, Zaidi SMJ, Kaliaguine S (2000) Appl Catal A 196:9

    Article  Google Scholar 

  18. Liu XJ, Gu XD, Shen JY (2003) Chin J Catal 24:674

    CAS  Google Scholar 

  19. Iketani K, Sun R, Toki M, Hirota K, Yamaguchi O (2004) Mater Sci Eng B 108:187

    Article  CAS  Google Scholar 

  20. Bañares MA, Alemany LJ, Jiménez MC, Larrubia MA, Delgado F et al (1996) J Solid State Chem 124:69

    Article  Google Scholar 

  21. Barraclough CG, Lewis J, Nyholm RS (1959) J Chem Soc 3552

  22. Leising RA, Thiebolt WCIII, Takeuchi ES (1994) Inorg Chem 33:5733

    Article  CAS  Google Scholar 

  23. Kawakita J, Katayama Y, Miura T, Kishi T (1997) Solid State Ionics 99:71

    Article  CAS  Google Scholar 

  24. Zhao Y, Li CZ, Liu XH, Gu F, Jiang HB, Shao W, Zhang L, He Y (2007) Mater Lett 61:79

    Article  CAS  Google Scholar 

  25. Briand L, Gambaro L, Thomas H (1996) J Catal 161:839

    Article  CAS  Google Scholar 

  26. Sivakumar S, Pillai PK, Mukundan P, Warrier KGK (2002) Mater Lett 57:330

    Article  CAS  Google Scholar 

  27. Ge X, Zhang HL (1998) J Solid State Chem 141:186

    Article  CAS  Google Scholar 

  28. Li MS, Shen JY (2002) J Catal 205:248

    Article  CAS  Google Scholar 

  29. Kiwi-Minsker L, Bulushev DA, Rainone F, Renken A (2002) J Mol Catal A 184:223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from NSFC (20233040 and 20673055), MSTC (2005CB221400) and Jiangsu Province, China (BG2006031) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyi Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, M., Yu, J., Chen, H. et al. Surface Acidic and Redox Properties of V–Ag–O/TiO2 Catalysts for the Selective Oxidation of Toluene to Benzaldehyde. Catal Lett 128, 373–378 (2009). https://doi.org/10.1007/s10562-008-9756-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9756-2

Keywords

Navigation